首页> 外文期刊>Knowledge-Based Systems >Performance-driven adaptive differential evolution with neighborhood topology for numerical optimization
【24h】

Performance-driven adaptive differential evolution with neighborhood topology for numerical optimization

机译:基于性能的具有邻域拓扑的自适应差分进化,用于数值优化

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel differential evolution algorithm for numerical optimization by making full use of the neighborhood information to balance exploration and exploitation. To effectively meet the search requirement of each individual, a neighborhood-based adaptive mutation strategy is developed by using the ring topology to construct an elite individual set and adaptively choosing a suitable elite individual to guide its search according to its neighborhood performance. Then, a neighborhood-based adaptive parameter setting is designed to improve the suitability of parameters for each individual by utilizing the feedback information of population and its neighbors simultaneously. Furthermore, a restart mechanism is proposed to further enhance the performance of algorithm by adaptively strengthening the search abilities of unpromising individuals, removing the worse individuals and randomly replacing some individuals with Gaussian Walks. Differing from the existing DE variants, the proposed algorithm adaptively guides the search and suitably adjusts the parameters for each individual by using its neighborhood performance, and strengthens the exploitation and exploration by removing the worse individuals and randomly replacing some individuals. Then it could properly adjust the search ability of each individual, and effectively balance diversity and convergence. Compared with 16 typical algorithms, the numerical results on 30 IEEE CEC2014 benchmark functions show that the proposed algorithm has better performance. (C) 2019 Elsevier B.V. All rights reserved.
机译:通过充分利用邻域信息来平衡勘探与开发,提出了一种数值优化的新型差分进化算法。为了有效地满足每个个体的搜索需求,通过使用环形拓扑构造一个精英个体集合并根据其邻居性能自适应地选择合适的精英个体来指导其搜索,从而开发出一种基于邻域的自适应变异策略。然后,设计了一种基于邻域的自适应参数设置,以通过同时利用人口及其邻居的反馈信息来提高每个人的参数适用性。此外,提出了一种重启机制,通过适应性增强无前途个体的搜索能力,去除较差的个体并用高斯遍历随机替换一些个体,从而进一步提高算法的性能。与现有的DE变体不同,该算法自适应地指导搜索并通过利用其邻域性能为每个个体适当地调整参数,并通过删除较差的个体并随机替换一些个体来加强开发和探索。然后可以适当地调整每个人的搜索能力,并有效地平衡多样性和收敛性。与16种典型算法相比,IEEE CEC2014 30个基准函数的数值结果表明,该算法具有更好的性能。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号