首页> 外文期刊>Knowledge-Based Systems >adVAE: A self-adversarial variational autoencoder with Gaussian anomaly prior knowledge for anomaly detection
【24h】

adVAE: A self-adversarial variational autoencoder with Gaussian anomaly prior knowledge for anomaly detection

机译:adVAE:具有高斯异常先验知识的自对抗变分自动编码器,用于异常检测

获取原文
获取原文并翻译 | 示例

摘要

Recently, deep generative models have become increasingly popular in unsupervised anomaly detection. However, deep generative models aim at recovering the data distribution rather than detecting anomalies. Moreover, deep generative models have the risk of overfitting training samples, which has disastrous effects on anomaly detection performance. To solve the above two problems, we propose a self-adversarial variational autoencoder (adVAE) with a Gaussian anomaly prior assumption. We assume that both the anomalous and the normal prior distribution are Gaussian and have overlaps in the latent space. Therefore, a Gaussian transformer net T is trained to synthesize anomalous but near-normal latent variables. Keeping the original training objective of a variational autoencoder, a generator G tries to distinguish between the normal latent variables encoded by E and the anomalous latent variables synthesized by T, and the encoder E is trained to discriminate whether the output of G is real. These new objectives we added not only give both G and E the ability to discriminate, but also become an additional regularization mechanism to prevent overfitting. Compared with other competitive methods, the proposed model achieves significant improvements in extensive experiments. The employed datasets and our model are available in a Github repository. (C) 2019 Elsevier B.V. All rights reserved.
机译:最近,深度生成模型在无监督异常检测中变得越来越流行。但是,深层生成模型旨在恢复数据分布,而不是检测异常。此外,深层生成模型存在过度拟合训练样本的风险,这会对异常检测性能造成灾难性影响。为了解决上述两个问题,我们提出了一种具有高斯异常先验假设的自对抗变分自动编码器(adVAE)。我们假设异常分布和正态先验分布都是高斯分布,并且在潜在空间中有重叠。因此,训练了高斯变压器网T来合成异常但接近正常的潜变量。为了保持变分式自动编码器的原始训练目标,生成器G试图区分E编码的正常潜变量和T合成的异常潜变量,并对编码器E进行训练以区分G的输出是否为实数。我们添加的这些新目标不仅赋予G和E歧视的能力,而且成为防止过度拟合的附加正则化机制。与其他竞争方法相比,该模型在大量实验中取得了显着改进。 Github存储库中提供了所采用的数据集和我们的模型。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号