首页> 外文期刊>Computer vision and image understanding >Video anomaly detection and localization via Gaussian Mixture Fully Convolutional Variational Autoencoder
【24h】

Video anomaly detection and localization via Gaussian Mixture Fully Convolutional Variational Autoencoder

机译:通过高斯混合全卷积改变自动化器的视频异常检测和定位

获取原文
获取原文并翻译 | 示例

摘要

We present a novel end-to-end partially supervised deep learning approach for video anomaly detection and localization using only normal samples. The insight that motivates this study is that the normal samples can be associated with at least one Gaussian component of a Gaussian Mixture Model (GMM), while anomalies either do not belong to any Gaussian component. The method is based on Gaussian Mixture Variational Autoencoder, which can learn feature representations of the normal samples as a Gaussian Mixture Model trained using deep learning. A Fully Convolutional Network (FCN) that does not contain a fully-connected layer is employed for the encoder-decoder structure to preserve relative spatial coordinates between the input image and the output feature map. Based on the joint probabilities of each of the Gaussian mixture components, we introduce a sample energy based method to score the anomaly of image test patches. A two-stream network framework is employed to combine the appearance and motion anomalies, using RGB frames for the former and dynamic flow images, for the latter. We test our approach on two popular benchmarks (UCSD Dataset and Avenue Dataset). The experimental results verify the superiority of our method compared to the state of the art.
机译:我们展示了一种新的端到端部分监督的局部监督的深度学习方法,用于仅使用正常样本的视频异常检测和定位。激励本研究的洞察力是正常样本可以与高斯混合模型(GMM)的至少一个高斯组件相关联,而异常则不属于任何高斯组件。该方法基于高斯混合变分性自动化器,其可以将正常样本的特征表示,作为使用深度学习培训的高斯混合模型的正常样本。不包含完全连接层的完全卷积网络(FCN)用于编码器 - 解码器结构以保护输入图像和输出特征图之间的相对空间坐标。基于每个高斯混合物组分的联合概率,我们引入了基于样本能量的方法来得分图像测试斑块的异常。使用双流网络框架来使用用于前者和动态流动图像的RGB帧来结合外观和运动异常。我们在两个流行的基准测试(UCSD DataSet和Avenue数据集)上测试我们的方法。实验结果验证了与现有技术相比我们的方法的优越性。

著录项

  • 来源
    《Computer vision and image understanding》 |2020年第6期|65-76|共12页
  • 作者单位

    National Key Laboratory of Science and Technology on Vessel Integrated Power System Naval University of Engineering Wuhan 430033 China Science and Technology on Automatic Target Recognition Laboratory (ATR) National University of Defense Technology Changsha 410073 China;

    Science and Technology on Automatic Target Recognition Laboratory (ATR) National University of Defense Technology Changsha 410073 China;

    State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing Wuhan University Wuhan Hubei 430071 China;

    National Key Laboratory of Science and Technology on Vessel Integrated Power System Naval University of Engineering Wuhan 430033 China Science and Technology on Automatic Target Recognition Laboratory (ATR) National University of Defense Technology Changsha 410073 China;

    Department of Electrical and Computer Engineering Center for Intelligent Machines McGill University 3480 University Street Montreal H3A2A7 Canada;

    State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing Wuhan University Wuhan Hubei 430071 China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Anomaly detection; Video surveillance; Variational autoencoder; Gaussian mixture model; Dynamic flow; Two-stream network;

    机译:异常检测;视频监控;变形式自动化器;高斯混合模型;动态流动;双流网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号