首页> 外文期刊>Knowledge-Based Systems >Hybrid neural conditional random fields for multi-view sequence labeling
【24h】

Hybrid neural conditional random fields for multi-view sequence labeling

机译:混合神经条件随机场用于多视图序列标记

获取原文
获取原文并翻译 | 示例

摘要

In traditional machine learning, conditional random fields (CRF) is the mainstream probability model for sequence labeling problems. CRF considers the relation between adjacent labels other than decoding each label independently, and better performance is expected to achieve. However, there are few multiview learning methods involving CRF which can be directly used for sequence labeling tasks. In this paper, we propose a novel multi-view CRF model to label sequential data, called MVCRF, which well exploits two principles for multi-view learning: consensus and complementary. We first use different neural networks to extract features from multiple views. Then, considering the consistency among the different views, we introduce a joint representation space for the extracted features and minimize the distance between the two views for regularization. Meanwhile, following the complementary principle, the features of multiple views are integrated into the framework of CRF. We train MVCRF in an endto-end fashion and evaluate it on two benchmark data sets. The experimental results illustrate that MVCRF obtains state-of-the-art performance: F-1 score 95.44% for chunking on CoNLL-2000, 95.06% for chunking and 96.99% for named entity recognition (NER) on CoNLL-2003. (C) 2019 Elsevier B.V. All rights reserved.
机译:在传统的机器学习中,条件随机字段(CRF)是序列标记问题的主流概率模型。除了独立地解码每个标签外,CRF还考虑了相邻标签之间的关系,并且有望实现更好的性能。但是,很少有涉及CRF的多视图学习方法可直接用于序列标记任务。在本文中,我们提出了一种新颖的多视图CRF模型来标记顺序数据,称为MVCRF,该模型很好地利用了两个用于多视图学习的原理:共识和互补。我们首先使用不同的神经网络从多个视图中提取特征。然后,考虑到不同视图之间的一致性,我们为提取的特征引入联合表示空间,并最小化两个视图之间的距离以进行正则化。同时,遵循补充原则,将多种视图的特征集成到CRF框架中。我们以端到端的方式训练MVCRF,并在两个基准数据集上对其进行评估。实验结果表明,MVCRF获得了最先进的性能:在CoNLL-2000上,F-1的分块得分为95.44%,在分块上的F-1得分为95.06%,在CoNLL-2003上的命名实体识别(NER)为96.99%。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2020年第15期|105151.1-105151.8|共8页
  • 作者

  • 作者单位

    East China Normal Univ Sch Comp Sci & Technol 3663 North Zhongshan Rd Shanghai 200062 Peoples R China;

    East China Normal Univ Sch Comp Sci & Technol 3663 North Zhongshan Rd Shanghai 200062 Peoples R China|Tongji Univ Shanghai Inst Intelligent Sci & Technol Shanghai Peoples R China;

    Shanghai Jiao Tong Univ Sch Med Shanghai Childrens Med Ctr Dept Pathol Shanghai Peoples R China;

    Huawei Technol CO LTD 2012 Labs Shenzhen Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Conditional random fields; Sequence labeling; Multi-view learning; Neural network; Dynamic programming;

    机译:条件随机场;序列标记;多视图学习;神经网络;动态编程;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号