首页> 外文期刊>Knowledge-Based Systems >Semi-supervised multi-view clustering with Graph-regularized Partially Shared Non-negative Matrix Factorization
【24h】

Semi-supervised multi-view clustering with Graph-regularized Partially Shared Non-negative Matrix Factorization

机译:图正则化部分共享非负矩阵分解的半监督多视图聚类

获取原文
获取原文并翻译 | 示例

摘要

Non-negative matrix factorization is widely used in multi-view clustering due to its ability of learning a common dimension-reduced factor. Recently, it is combined with the label information to improve the clustering, but the affection of the dimension-reduction to the classes of the labeled data is seldom considered. Motivated by that the graph constraint can keep the geometric structure of the data, it is employed to restrict the class variation of the data caused by the dimension reduction, and a semi-supervised method called Graph-regularized Partially Shared Non-negative Matrix Factorization (GPSNMF) is proposed for multi-view clustering in this paper. In our method, the affinity graph of each view is constructed to encode the geometric information, and the corresponding multiplication update algorithm based on alternative iteration rule is derived. In the experiments, two clustering approaches are tested based on the results of the proposed GPSNMF, and four real-world databases with different label proportions are performed to demonstrate the advantages of our method over the state-of-the-art methods. (C) 2019 Elsevier B.V. All rights reserved.
机译:非负矩阵分解因其能够学习常见的降维因子而广泛用于多视图聚类中。最近,它与标签信息结合以改善聚类,但是很少考虑降维对标签数据的类别的影响。由于图约束可以保留数据的几何结构,因此它被用来限制因降维而导致的数据类别变化,以及一种称为图规则化部分共享非负矩阵分解的半监督方法(本文提出了GPSNMF)用于多视图聚类。在我们的方法中,构造每个视图的亲和图以对几何信息进行编码,并基于替代迭代规则推导相应的乘法更新算法。在实验中,基于提出的GPSNMF的结果测试了两种聚类方法,并执行了四个具有不同标签比例的真实世界数据库,以证明我们的方法相对于最新方法的优势。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2020年第29期|105185.1-105185.10|共10页
  • 作者

  • 作者单位

    Guangdong Univ Technol Sch Automat Guangdong Key Lab IoT Informat Technol Guangzhou 510006 Peoples R China;

    Guangdong Univ Technol Sch Automat Guangdong Key Lab IoT Informat Technol Guangzhou 510006 Peoples R China|Minist Educ Key Lab Intelligent Detect & Internet Things Mfg Guangzhou 510006 Peoples R China|Guangdong Hong Kong Macao Joint Lab Smart Discret Guangzhou 510006 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Graph-regularization; Semi-supervised learning; Multi-view clustering; Non-negative matrix factorization;

    机译:图正则化;半监督学习;多视图聚类;非负矩阵分解;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号