首页> 外文期刊>Knowledge-Based Systems >Semi-supervised multi-view learning by using label propagation based non-negative matrix factorization
【24h】

Semi-supervised multi-view learning by using label propagation based non-negative matrix factorization

机译:基于标签传播的非负矩阵分解,半监督多视图学习

获取原文
获取原文并翻译 | 示例

摘要

Semi-supervised multi-view learning methods aim to boost the learning performance by conjunction with labeled data, because the label information can enhance the discriminant ability of the learned model. Recently, non-negative matrix factorization has received widespread attention in semi supervised multi-view learning due to its powerful ability of feature extraction. However, the problem of very limited available labeled data is seldom considered. In this case, it is hard for existing approaches to obtain satisfied performance. Motivated by that the label propagation can classify a large number of unlabeled data with few labeled data, in this paper, we propose a novel semi-supervised multi-view learning approach to address the problem of sparse labeled data, called Label Propagation based Non-negative Matrix Factorization (LPNMF). In our model, the intrinsic manifold structure of data is constructed by the adaptive neighbors technology. Based on this intrinsic manifold structure, the label propagation is further employed to make full use of the limited labeled data. Besides, we design an efficient alternating algorithm for solving the optimization problem and provide theoretical analysis on its convergence properties and computational complexity. Finally, experiments on four real-world datasets demonstrate the advantage of our proposed methods, with comparison to the state-of-the-art methods. (C) 2021 Elsevier B.V. All rights reserved.
机译:半监督多视图学习方法旨在通过与标记数据的结合提升学习性能,因为标签信息可以增强学习模型的判别能力。最近,由于特征提取的强大能力,非负数矩阵分组在半监督多视图学习中得到了广泛的关注。但是,很少考虑非常有限的可用标记数据的问题。在这种情况下,难以获得满足性能的方法。通过标签传播的动机可以分类大量标记数据,本文提出了一种新的半监督多视图学习方法来解决稀疏标记数据的问题,称为基于标签传播的非 - 负矩阵分解(LPNMF)。在我们的模型中,数据的内在歧管结构由自适应邻居技术构成。基于该内在歧管结构,还采用标签传播以充分利用有限的标记数据。此外,我们设计了一种有效的交替算法,用于解决优化问题,并为其收敛性和计算复杂性提供理论分析。最后,四个现实世界数据集的实验表明了我们所提出的方法的优势,与最先进的方法相比。 (c)2021 elestvier b.v.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2021年第27期|107244.1-107244.12|共12页
  • 作者单位

    Guangdong Univ Technol Sch Automat Guangdong Key Lab IoT Informat Technol Guangzhou 510006 Peoples R China;

    Guangdong Univ Technol Sch Automat Guangdong Key Lab IoT Informat Technol Guangzhou 510006 Peoples R China;

    Guangdong Univ Technol Sch Automat Guangdong Key Lab IoT Informat Technol Guangzhou 510006 Peoples R China|Minist Educ Key Lab iDetect & Mfg IoT Guangzhou 510006 Peoples R China;

    Guangdong Univ Technol Sch Automat Guangdong Key Lab IoT Informat Technol Guangzhou 510006 Peoples R China|Guangdong HongKong Macao Joint Lab Smart Discrete Guangzhou 510006 Peoples R China;

    Guangdong Univ Technol Sch Automat Guangdong Key Lab IoT Informat Technol Guangzhou 510006 Peoples R China|Guangdong HongKong Macao Joint Lab Smart Discrete Guangzhou 510006 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Non-negative matrix factorization; Semi-supervised multi-view learning; Label propagation;

    机译:非负矩阵分解;半监督多视图学习;标签传播;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号