首页> 外文期刊>Knowledge-Based Systems >Context-aware instance matching through graph embedding in lexical semantic space
【24h】

Context-aware instance matching through graph embedding in lexical semantic space

机译:在词汇语义空间中通过图嵌入实现上下文感知的实例匹配

获取原文
获取原文并翻译 | 示例

摘要

In recent years, the growing availability of open-accessed data (e.g., Wikipedia) combined with the advances in algorithmic techniques for information extraction have facilitated the design and structuring of information giving rise to knowledge bases. A major challenge relies in the integration of these independently designed knowledge bases. Instance matching is presented as one of the solutions to facilitate this process. It aims to link co-referent instances with an owl : same As connection to allow knowledge bases to complement each other. In this work, we present an approach for automatic alignment of instances in knowledge bases in the form of Resource Description Framework (RDF) graphs. Our approach generates for each instance a virtual document from its local description (i.e., data-type properties) and instances related to it through object-type properties (i.e., neighbors). We transform the instance matching problem into a document matching problem and solve it by a vector space embedding technique. We consider the pre-trained word embeddings to assess words similarities at both the lexical and semantic levels. We evaluate our approach on multiple knowledge bases from the instance track of the Ontology Alignment Evaluation Initiative (OAEI). The experiments show that our approach gets prominent results compared to several state-of-the-art existing approaches. (C) 2019 Elsevier B.V. All rights reserved.
机译:近年来,开放访问数据(例如Wikipedia)的可用性不断增长,再加上用于信息提取的算法技术的进步,促进了信息的设计和结构化,从而形成了知识库。主要挑战在于这些独立设计的知识库的集成。实例匹配是促进此过程的解决方案之一。它旨在将共同引用实例与owl链接起来:same As连接,以允许知识库相互补充。在这项工作中,我们以资源描述框架(RDF)图的形式提出一种自动对齐知识库中实例的方法。我们的方法从每个实例的本地描述(即数据类型属性)以及通过对象类型属性(即邻居)与其相关的实例为每个实例生成一个虚拟文档。我们将实例匹配问题转换为文档匹配问题,并通过向量空间嵌入技术对其进行解决。我们考虑预先训练的词嵌入,以在词汇和语义两个层面上评估词的相似性。我们从本体一致性评估计划(OAEI)的实例跟踪中,基于多个知识库评估我们的方法。实验表明,与几种最先进的现有方法相比,我们的方法获得了突出的结果。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号