首页> 外文期刊>Future generation computer systems >Instance Matching in Knowledge Graphs through random walks and semantics
【24h】

Instance Matching in Knowledge Graphs through random walks and semantics

机译:通过随机散步和语义在知识图中匹配实例

获取原文
获取原文并翻译 | 示例

摘要

Instance Matching (IM) is the process of matching instances that refer to the same real-world object (e.g., the same person) across different independent Knowledge Bases (KBs). This process is considered as a key step, for instance, in the integration of different KBs. In this paper, we focus on the problem of IM across different KBs represented as Knowledge Graphs (KGs). We propose SBIGMat, a novel approach for the IM problem based on Markov random walks (RW). Our approach leverages both the local and global information mutually calculated from a pairwise similarity graph. Precisely, we first build an expanded association graph consisting of pairs of IM candidates. Then, we rank each candidate pair through the stationary distribution computed from the RW on the association graph. We propose semantic and bipartite graph-based post-processing strategies that operate on the obtained random walk ranks to optimize the final assignment of co-referents. We provide a scalable distributed implementation of our approach on top of the Spark framework and we evaluate it on benchmark datasets from the instance track of the Ontology Alignment Evaluation Initiative (OAEI). The experiments show the efficiency and scalability of SBIGMat compared to several state-of-the-art IM approaches.
机译:实例匹配(IM)是匹配不同独立知识库(KBS)的相同实际对象(例如,同一个人)的实例的过程。该过程被认为是一个关键步骤,例如,在不同KB的集成中。在本文中,我们专注于IM在不同KBS中表示知识图表(KGS)的问题。我们提出SBIGMAT,基于Markov随机步行(RW)的IM问题的新方法。我们的方法利用了从一对相似图相互计算的本地和全局信息。精确地,我们首先构建由IM候选的对组成的扩展关联图。然后,我们通过从关联图上的RW计算的静止分布来对每个候选对进行排序。我们提出了基于语义和基于图形的基于图形的后处理策略,这些策略在获得的随机步行排名上运行,以优化共同指导的最终分配。我们在Spark框架之上提供了我们方法的可扩展分布式实现,并从本体对齐评估计划(OAEI)的实例跟踪,在基准数据集中评估它。实验表明,与几种最先进的IM方法相比,SBIGMAT的效率和可扩展性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号