首页> 外文期刊>Knowledge-Based Systems >Local adaptive learning for semi-supervised feature selection with group sparsity
【24h】

Local adaptive learning for semi-supervised feature selection with group sparsity

机译:具有局部稀疏性的半监督特征选择的局部自适应学习

获取原文
获取原文并翻译 | 示例

摘要

Feature selection is often an important tool for many machine learning and data mining tasks. By largely removing the irrelevant features and reducing the complexity of the data processing, feature selection can significantly improve the performance of subsequent classification or clustering tasks. As a result of the rapid development of social networking, large amounts of high-dimensional data have been generated. Due to the high cost of collecting sufficient labels, graph-based semi-supervised feature selection algorithms have attracted the most research interest; however, these approaches neglect the local sparsity of data. Accordingly, motivated by the merits of adaptive learning and sparse learning, we propose a novel feature selection method with a local adaptive loss function and a global sparsity constraint in this paper. Our method can operate more flexibly to model data with different distributions. Moreover, when both the local and global sparsity of data is considered, our method is more capable of selecting the most discriminating features. Experimental results on various real-world applications demonstrate the effectiveness of the proposed feature selection method compared to several state-of-the-art methods. (C) 2019 Elsevier B.V. All rights reserved.
机译:特征选择通常是许多机器学习和数据挖掘任务的重要工具。通过在很大程度上删除不相关的特征并降低数据处理的复杂性,特征选择可以显着提高后续分类或聚类任务的性能。由于社交网络的快速发展,已经生成了大量的高维数据。由于收集足够多标签的成本很高,基于图的半监督特征选择算法引起了人们的最大研究兴趣。但是,这些方法忽略了数据的局部稀疏性。因此,基于自适应学习和稀疏学习的优点,本文提出了一种具有局部自适应损失函数和全局稀疏约束的特征选择方法。我们的方法可以更灵活地操作以对具有不同分布的数据进行建模。此外,当同时考虑本地和全局数据稀疏性时,我们的方法更有能力选择最有区别的功能。与多种最新方法相比,在各种实际应用中的实验结果证明了所提出的特征选择方法的有效性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号