首页> 外文期刊>Knowledge-Based Systems >Visual-textual sentiment classification with bi-directional multi-level attention networks
【24h】

Visual-textual sentiment classification with bi-directional multi-level attention networks

机译:双向多层次注意力网络的视文本情感分类

获取原文
获取原文并翻译 | 示例

摘要

Social network has become an inseparable part of our daily lives and thus the automatic sentiment analysis on social media content is of great significance to identify people's viewpoints, attitudes, and emotions on the social websites. Most existing works have concentrated on the sentiment analysis of single modality such as image or text, which cannot handle the social media content with multiple modalities including both image and text. Although some works tried to conduct multi modal sentiment analysis, the complicated correlations between the two modalities have not been fully explored. In this paper, we propose a novel Bi-Directional Multi-Level Attention (BDMLA) model to exploit the complementary and comprehensive information between the image modality and text modality for joint visual-textual sentiment classification. Specifically, to highlight the emotional regions and words in the image-text pair, visual attention network and semantic attention network are proposed respectively. The visual attention network makes region features of the image interact with multiple semantic levels of text (word, phrase, and sentence) to obtain the attended visual features. The semantic attention network makes semantic features of the text interact with multiple visual levels of image (global and local) to obtain the attended semantic features. Then, the attended visual and semantic features from the two attention networks are unified into a holistic framework to conduct visual-textual sentiment classification. Proof-of-concept experiments conducted on three real-world datasets verify the effectiveness of our model. (C) 2019 Elsevier B.V. All rights reserved.
机译:社交网络已经成为我们日常生活中不可分割的一部分,因此对社交媒体内容进行自动情感分析对于识别人们在社交网站上的观点,态度和情感具有重要意义。现有的大多数作品都集中在对图像或文本等单一形式的情感分析上,这些形式无法处理包括图像和文本在内的多种形式的社交媒体内容。尽管有些作品试图进行多模态情感分析,但两种模态之间的复杂关联尚未得到充分探索。在本文中,我们提出了一种新颖的双向多层次注意(BDMLA)模型,以利用图像模态和文本模态之间的补充和全面信息进行联合的视觉-文本情感分类。具体地,为了突出图像-文本对中的情感区域和单词,分别提出了视觉注意网络和语义注意网络。视觉注意力网络使图像的区域特征与文本(单词,词组和句子)的多个语义级别进行交互,以获得关注的视觉特征。语义注意力网络使文本的语义特征与图像的多个可视级别(全局和局部)交互,以获得相关的语义特征。然后,将来自两个注意力网络的出席视觉和语义特征统一为一个整体框架,以进行视觉-文本情感分类。在三个真实世界的数据集上进行的概念验证实验证明了我们模型的有效性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2019年第15期|61-73|共13页
  • 作者单位

    Beihang Univ, Sch Comp Sci & Engn, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China;

    Jinan Univ, Coll Cyber Secur, Guangzhou 510632, Guangdong, Peoples R China|Jinan Univ, Coll Informat Sci & Technol, Guangzhou 510632, Guangdong, Peoples R China|Guangdong Key Lab Data Secur & Privacy Preserving, Guangzhou 510632, Guangdong, Peoples R China;

    Beihang Univ, Sch Cyber Sci & Technol, Beijing 100191, Peoples R China;

    Nanjing Univ Aeronaut & Astronaut, Sch Comp Sci & Technol, Nanjing 210016, Jiangsu, Peoples R China;

    Beihang Univ, Sch Comp Sci & Engn, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China;

    Beihang Univ, Sch Comp Sci & Engn, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China;

    Coordinat Ctr China, Natl Comp Network Emergency Response Tech Team, Beijing 100029, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Multi-modal; Social image; Attention model; Sentiment analysis;

    机译:多模式;社会形象;注意力模型;情感分析;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号