首页> 外文期刊>Knowledge-Based Systems >Locality-constrained least squares regression for subspace clustering
【24h】

Locality-constrained least squares regression for subspace clustering

机译:局部约束最小二乘回归用于子空间聚类

获取原文
获取原文并翻译 | 示例

摘要

Low-rank representation (LRR) is a typical data representation method that has been developed in recent years. Based on the main idea of LRR, least squares regression (LSR) constructs a new optimization problem to group the highly correlated data together. Compared with other LRR algorithms that are sophisticated, LSR is simpler and more efficient. It is a linear representation method that captures the global structure of data with a low-rank constraint. Research has shown that locality constraints typically improve the discrimination of the representation and demonstrate better performance than those “non-local” methods for image recognition tasks. To combine LSR and the locality constraints, we propose a novel data representation method called locality-constrained LSR (LCLSR) for subspace clustering. LCLSR forces the representation to prefer the selection of neighborhood points. The locality constraint is calculated based on the Euclidean distances between data points. Under the locality constraint, the obtained affinity matrix captures the locally linear relationship for data points lie on a nonlinear manifold. We propose three approaches to obtain the locality constraint and compare their performance with other related work on subspace clustering. We conducted extensive experiments on several datasets for subspace clustering. The results demonstrated that the proposed DCLSR, LCLSRε, and LCLSRksubstantially outperformed state-of-the-art subspace clustering methods.
机译:低秩表示(LRR)是近年来开发的一种典型的数据表示方法。基于LRR的主要思想,最小二乘回归(LSR)构造了一个新的优化问题,将高度相关的数据组合在一起。与其他复杂的LRR算法相比,LSR更简单,更高效。它是一种线性表示方法,可捕获具有低秩约束的数据的全局结构。研究表明,与图像识别任务的“非局部”方法相比,局部性约束通常可以改善表示的辨别力并表现出更好的性能。为了结合LSR和位置约束,我们提出了一种新的数据表示方法,称为子空间聚类的位置约束LSR(LCLSR)。 LCLSR强制表示法更喜欢选择邻域点。基于数据点之间的欧几里得距离来计算局部性约束。在局部性约束下,获得的亲和度矩阵捕获非线性流形上数据点的局部线性关系。我们提出了三种方法来获取局部性约束并将其性能与子空间聚类的其他相关工作进行比较。我们对子空间聚类的几个数据集进行了广泛的实验。结果表明,提出的DCLSR,LCLSRε和LCLSRk大大优于最新的子空间聚类方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号