首页> 外文期刊>Knowledge-Based Systems >Graph-regularized least squares regression for multi-view subspace clustering
【24h】

Graph-regularized least squares regression for multi-view subspace clustering

机译:用于多视图子空间群集的图形定期化最小二乘回归

获取原文
获取原文并翻译 | 示例

摘要

Many works have proven that the consistency and differences in multi-view subspace clustering make the clustering results better than the single-view clustering. Therefore, this paper studies the multi-view clustering problem, which aims to divide data points into several groups using multiple features. However, existing multi-view clustering methods fail to capturing the grouping effect and local geometrical structure of the multiple features. In order to solve these problems, this paper proposes a novel multi-view subspace clustering model called graph-regularized least squares regression (GLSR), which uses not only the least squares regression instead of the nuclear norm to generate grouping effect, but also the manifold constraint to preserve the local geometrical structure of multiple features. Specifically, the proposed GLSR method adopts the least squares regression to learn the globally consensus information shared by multiple views and the column-sparsity norm to measure the residual information. Under the alternating direction method of multipliers framework, an effective method is developed by iteratively update all variables. Numerical studies on eight real databases demonstrate the effectiveness and superior performance of the proposed GLSR over eleven state-of-the-art methods. (C) 2020 Elsevier B.V. All rights reserved.
机译:许多作品已经证明,多视图子空间聚类的一致性和差异使得群集结果比单视图群集更好。因此,本文研究了多视图聚类问题,旨在使用多个功能将数据点划分为几个组。但是,现有的多视图群集方法无法捕获多个功能的分组效果和局部几何结构。为了解决这些问题,本文提出了一种名为Graph-Rangualized最小二乘回归(GLSR)的新型多视图子空间聚类模型,其不仅使用最小二乘回归而不是核规范来产生分组效果,而且还使用歧管约束以保留多个特征的局部几何结构。具体地,所提出的GLSR方法采用最小二乘回归来学习由多视图共享的全局共识信息和列稀疏标准来测量残差。在乘法器框架的交替方向方法下,通过迭代更新所有变量来开发有效方法。八个真实数据库的数值研究证明了提出的GLSR在11件最先进的方法中的有效性和优越性。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号