首页> 外文期刊>Knowledge-Based Systems >Consensus learning guided multi-view unsupervised feature selection
【24h】

Consensus learning guided multi-view unsupervised feature selection

机译:共识学习指导的多视图无监督特征选择

获取原文
获取原文并翻译 | 示例

摘要

Multi-view unsupervised feature selection has been proven to be an effective approach to reduce the dimensionality of multi-view data. One of its key issues is how to exploit the underlying common structures across different views. In this paper, we propose a consensus learning, guided multi-view unsupervised feature selection method, which embeds multi-view feature selection into a non-negative matrix factorization based clustering with sparse constrain. The proposed method learns latent feature matrices from all the views, and optimizes a consensus matrix such that the difference between the cluster indicator matrix of each view and the consensus matrix is minimized. The parameters for balancing the weights of different views are automatically adjusted, and a sparse constraint is imposed on the latent feature matrices to perform feature selection. After that, we design an effective iterative algorithm to solve the resultant optimization problem. Extensive experiments have been conducted on six publicly multi-view datasets, and the results demonstrate that the proposed algorithm outperforms several other state-of-the-art single view and multi-view unsupervised feature selection methods in terms of clustering tasks, validating the effectiveness of the proposed multi-view unsupervised feature selection method. The source code of our algorithm will be available on our on-line page: http://tangchang.net/.
机译:多视图无监督特征选择已被证明是减少多视图数据维数的有效方法。它的关键问题之一是如何在不同的视图之间利用底层的通用结构。在本文中,我们提出了一种共识学习,引导的多视图无监督特征选择方法,该方法将多视图特征选择嵌入到基于稀疏约束的基于非负矩阵分解的聚类中。所提出的方法从所有视图中学习潜在特征矩阵,并优化共识矩阵,以使每个视图的聚类指标矩阵与共识矩阵之间的差异最小。自动调整用于平衡不同视图的权重的参数,并对潜在特征矩阵施加稀疏约束以执行特征选择。之后,我们设计了一种有效的迭代算法来解决由此产生的优化问题。在六个公开的多视图数据集上进行了广泛的实验,结果表明该算法在聚类任务方面优于其他几种最新的单视图和多视图无监督特征选择方法,从而验证了有效性提出的多视图无监督特征选择方法。我们算法的源代码将在我们的在线页面上提供:http://tangchang.net/。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号