首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on >Clustering-Guided Sparse Structural Learning for Unsupervised Feature Selection
【24h】

Clustering-Guided Sparse Structural Learning for Unsupervised Feature Selection

机译:聚类指导的稀疏结构学习的无监督特征选择

获取原文
获取原文并翻译 | 示例

摘要

Many pattern analysis and data mining problems have witnessed high-dimensional data represented by a large number of features, which are often redundant and noisy. Feature selection is one main technique for dimensionality reduction that involves identifying a subset of the most useful features. In this paper, a novel unsupervised feature selection algorithm, named clustering-guided sparse structural learning (CGSSL), is proposed by integrating cluster analysis and sparse structural analysis into a joint framework and experimentally evaluated. Nonnegative spectral clustering is developed to learn more accurate cluster labels of the input samples, which guide feature selection simultaneously. Meanwhile, the cluster labels are also predicted by exploiting the hidden structure shared by different features, which can uncover feature correlations to make the results more reliable. Row-wise sparse models are leveraged to make the proposed model suitable for feature selection. To optimize the proposed formulation, we propose an efficient iterative algorithm. Finally, extensive experiments are conducted on 12 diverse benchmarks, including face data, handwritten digit data, document data, and biomedical data. The encouraging experimental results in comparison with several representative algorithms and the theoretical analysis demonstrate the efficiency and effectiveness of the proposed algorithm for feature selection.
机译:许多模式分析和数据挖掘问题都见证了由大量特征表示的高维数据,这些特征通常是多余且嘈杂的。特征选择是降维的一种主要技术,涉及识别最有用特征的子集。通过将聚类分析和稀疏结构分析集成到一个联合框架中,提出了一种新颖的无监督特征选择算法,称为聚簇引导的稀疏结构学习(CGSSL),并进行了实验评估。开发非负谱聚类是为了学习输入样本的更准确的聚类标签,该标签同时指导特征选择。同时,通过利用不同特征共享的隐藏结构来预测聚类标签,从而可以发现特征相关性,从而使结果更可靠。利用行稀疏模型使提出的模型适合于特征选择。为了优化提出的公式,我们提出了一种有效的迭代算法。最后,针对12种不同的基准进行了广泛的实验,包括面部数据,手写数字数据,文档数据和生物医学数据。与几种代表性算法相比,令人鼓舞的实验结果和理论分析证明了该算法在特征选择中的有效性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号