首页> 外文期刊>Knowledge-Based Systems >A multivariate encoder information based convolutional neural network for intelligent fault diagnosis of planetary gearboxes
【24h】

A multivariate encoder information based convolutional neural network for intelligent fault diagnosis of planetary gearboxes

机译:基于多元编码器信息的卷积神经网络用于行星齿轮箱的智能故障诊断

获取原文
获取原文并翻译 | 示例

摘要

Rotary encoder signal, as the built-in position information, possesses a wide variety of advantages over vibration signal and has aroused great interest in the field of health monitoring for rotating machinery. However, there are two major issues when attempting to detect and diagnose failures with encoder information. First of all, a series of proper signal processing methods need to be designed for fault feature extraction, which largely relies on the expert experience and domain knowledge. Furthermore, existing studies primarily concentrate on a single transform, such as instantaneous angular speed, which neglects the diversity of encoder information. In view of above deficiencies, a multivariate encoder information based convolutional neural network (MEI-CNN) is proposed for intelligent diagnosis in this paper. In this framework, three different types of dynamic encoder information are firstly acquired by analyzing and processing the raw position sequence, after that multivariate encoder information (MEI) data are constructed by data fusion. Finally, a concise and effective convolutional neural network is designed to extract discriminating features and provide diagnosis results. The proposed method not only overcomes drawbacks of traditional techniques based on vibration analysis, but also provides an intelligent way to achieve satisfactory diagnosis results. The effectiveness and superiority of MEI-CNN are validated by experimental data from a planetary gearbox test rig. The results also indicate that the proposed method may offer a promising tool for intelligent diagnosis of rotating machinery.
机译:旋转编码器信号作为内置位置信息,具有比振动信号更多的优势,并且引起了旋转机械健康监测领域的极大关注。但是,尝试使用编码器信息检测和诊断故障时有两个主要问题。首先,需要设计一系列适当的信号处理方法以进行故障特征提取,这在很大程度上取决于专家的经验和领域知识。此外,现有研究主要集中在单个变换上,例如瞬时角速度,它忽略了编码器信息的多样性。针对上述不足,提出了一种基于多元编码器信息的卷积神经网络(MEI-CNN),用于智能诊断。在此框架下,首先通过分析和处理原始位置序列来获取三种不同类型的动态编码器信息,然后通过数据融合构造多元编码器信息(MEI)数据。最后,设计了一个简洁有效的卷积神经网络来提取识别特征并提供诊断结果。所提出的方法不仅克服了基于振动分析的传统技术的弊端,而且为获得令人满意的诊断结果提供了一种智能的方法。 MEI-CNN的有效性和优越性已通过行星齿轮箱测试台的实验数据得到验证。结果还表明,所提出的方法可以为旋转机械的智能诊断提供有前途的工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号