首页> 外文期刊>Knowledge-Based Systems >Detecting Outlier Samples In Multivariate Time Series Dataset
【24h】

Detecting Outlier Samples In Multivariate Time Series Dataset

机译:在多元时间序列数据集中检测异常值样本

获取原文
获取原文并翻译 | 示例

摘要

Multivariate time series (MTS) samples which differ significantly from other MTS samples are referred to as outlier samples. In this paper, an algorithm designed to efficiently detect the top n outlier samples in MTS dataset, based on Solving Set, is proposed. An extended Frobenius Norm is used to compute the distance between MTS samples. The outlier score of MTS sample is the sum of the distances from its k nearest neighbors. The time complexity of the algorithm is subquadratic. We conduct experiments on two real-world datasets, stock market dataset and BCI (Brain Computer Interface) dataset. The experiment results show the efficiency and effectiveness of the algorithm.
机译:与其他MTS样本明显不同的多元时间序列(MTS)样本称为离群样本。提出了一种基于求解集的有效检测MTS数据集中前n个异常样本的算法。扩展的Frobenius范数用于计算MTS样本之间的距离。 MTS样本的离群值是与它的k个最近邻居的距离之和。该算法的时间复杂度是二次方的。我们在两个真实世界的数据集,股票市场数据集和BCI(大脑计算机接口)数据集上进行实验。实验结果表明了该算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号