首页> 外文OA文献 >Detecting Current Outliers: Continuous Outlier Detection over Time-Series Data Streams
【2h】

Detecting Current Outliers: Continuous Outlier Detection over Time-Series Data Streams

机译:检测当前异常值:在时间序列数据流上连续进行异常值检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The development of sensor devices and ubiquitous computing have increased time-series data streams. With data streams, current data arrives continuously and must be monitored. This paper presents outlier detection over data streams by continuous monitoring. Outlier detection is an important data mining issue and discovers outliers, which have features that differ profoundly from other objects or values. Most existing outlier detection techniques, however, deal with static data, which is computationally expensive. Specifically, for outlier detection over data streams, real-time response is very important. Existing techniques for static data, however, are fraught with many meaningless processes over data streams, and the calculation cost is too high. This paper introduces a technique that provides effective outlier detection over data streams using differential processing, and confirms effectiveness.
机译:传感器设备的发展和无处不在的计算已增加了时序数据流。通过数据流,当前数据将连续到达并且必须进行监视。本文介绍了通过连续监视对数据流进行异常检测。离群值检测是一个重要的数据挖掘问题,它会发现离群值,其异常特征与其他对象或值有很大不同。然而,大多数现有的异常检测技术处理静态数据,这在计算上是昂贵的。具体来说,对于数据流上的异常检测,实时响应非常重要。然而,用于静态数据的现有技术充满了对数据流的许多无意义的处理,并且计算成本太高。本文介绍了一种技术,该技术可使用差分处理对数据流进行有效的离群值检测,并确认其有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号