首页> 外文期刊>Knowledge-Based Systems >Mining event logs to support workflow resource allocation
【24h】

Mining event logs to support workflow resource allocation

机译:挖掘事件日志以支持工作流资源分配

获取原文
获取原文并翻译 | 示例

摘要

Currently, workflow technology is widely used to facilitate the business process in enterprise information systems (EIS), and it has the potential to reduce design time, enhance product quality and decrease product cost. However, significant limitations still exist: as an important task in the context of workflow, many present resource allocation (also known as "staff assignment") operations are still performed manually, which are time-consuming. This paper presents a data mining approach to address the resource allocation problem (RAP) and improve the productivity of workflow resource management. Specifically, an Apriori-like algorithm is used to find the frequent patterns from the event log, and association rules are generated according to predefined resource allocation constraints. Subsequently, a correlation measure named lift is utilized to annotate the negatively correlated resource allocation rules for resource reservation. Finally, the rules are ranked using the confidence measures as resource allocation rules. Comparative experiments are performed using C4.5, SVM, ID3, Naive Bayes and the presented approach, and the results show that the presented approach is effective in both accuracy and candidate resource recommendations.
机译:当前,工作流技术被广泛用于促进企业信息系统(EIS)中的业务流程,它具有减少设计时间,提高产品质量和降低产品成本的潜力。但是,仍然存在明显的局限性:作为工作流上下文中的一项重要任务,许多当前的资源分配(也称为“工作人员分配”)操作仍然是手动执行的,这非常耗时。本文提出了一种数据挖掘方法来解决资源分配问题(RAP)和提高工作流资源管理的生产率。具体来说,使用类似Apriori的算法从事件日志中查找频繁模式,并根据预定义的资源分配约束条件生成关联规则。随后,使用名为提升的相关度量来注释负相关的资源分配规则以进行资源保留。最后,使用置信度度量作为资源分配规则对规则进行排名。使用C4.5,SVM,ID3,朴素贝叶斯(Naive Bayes)和提出的方法进行了比较实验,结果表明,提出的方法在准确性和候选资源推荐方面均有效。

著录项

  • 来源
    《Knowledge-Based Systems》 |2012年第2012期|p.320-331|共12页
  • 作者单位

    School of Mechanical Engineering, Southeast University, Nanjing 210096, China Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 210096, China;

    School of Mechanical Engineering, Southeast University, Nanjing 210096, China Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 210096, China;

    School of Mechanical Engineering, Southeast University, Nanjing 210096, China Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 210096, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    workflow; resource allocation; data mining; process mining; association rules;

    机译:工作流程资源分配;数据挖掘;工艺采矿;关联规则;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号