首页> 外文期刊>Knowledge-Based Systems >Hybridization of evolutionary Levenberg-Marquardt neural networks and data pre-processing for stock market prediction
【24h】

Hybridization of evolutionary Levenberg-Marquardt neural networks and data pre-processing for stock market prediction

机译:演化Levenberg-Marquardt神经网络与数据预处理的混合,用于股票市场预测

获取原文
获取原文并翻译 | 示例

摘要

Artificial Intelligence models (AI) which computerize human reasoning has found a challenging test bed for various paradigms in many areas including financial time series prediction. Extensive researches have resulted in numerous financial applications using Al models. Since stock investment is a major investment activity, Lack of accurate information and comprehensive knowledge would result in some certain loss of investment. Hence, stock market prediction has always been a subject of interest for most investors and professional analysts. Stock market prediction is a challenging problem because uncertainties are always involved in the market movements. This paper proposes a hybrid intelligent model for stock exchange index prediction. The proposed model is a combination of data preprocessing methods, genetic algorithms and Levenberg-Marquardt (LM) algorithm for learning feed forward neural networks. Actually it evolves neural network initial weights for tuning with LM algorithm by using genetic algorithm. We also use data pre-processing methods such as data transformation and input variables selection for improving the accuracy of the model. The capability of the proposed method is tested by applying it for predicting some stock exchange indices used in the literature. The results show that the proposed approach is able to cope with the fluctuations of stock market values and also yields good prediction accuracy. So it can be used to model complex relationships between inputs and outputs or to find data patterns while performing financial prediction.
机译:将人类推理计算机化的人工智能模型(AI)已在包括财务时间序列预测在内的许多领域中为各种范式找到了具有挑战性的测试平台。广泛的研究已导致使用Al模型进行大量财务应用。由于股票投资是一项主要的投资活动,因此缺乏准确的信息和全面的知识会导致一定程度的投资损失。因此,股票市场预测一直是大多数投资者和专业分析师感兴趣的主题。股市预测是一个具有挑战性的问题,因为不确定性总是与市场走势有关。本文提出了一种用于股票交易指数预测的混合智能模型。该模型是数据预处理方法,遗传算法和Levenberg-Marquardt(LM)算法的组合,用于学习前馈神经网络。实际上,它是通过遗传算法来进化神经网络初始权重,以用于LM算法进行调整。我们还使用数据预处理方法(例如数据转换和输入变量选择)来提高模型的准确性。通过将其应用于预测一些文献中使用的证券交易所指数来测试所提出方法的能力。结果表明,所提出的方法能够应对股市价值的波动,并具有良好的预测精度。因此,它可以用于对输入和输出之间的复杂关系进行建模,或者在执行财务预测时查找数据模式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号