首页> 外文期刊>Knowledge-Based Systems >KNN-based weighted rough v-twin support vector machine
【24h】

KNN-based weighted rough v-twin support vector machine

机译:基于KNN的加权粗糙v-twin支持向量机

获取原文
获取原文并翻译 | 示例

摘要

Twin support vector classification (TSVM) finds two nonparallel hyper-planes by solving a pair of smaller-sized quadratic programming problems (QPPs) rather than a single large one as in the classical support vector machine (SVM), which makes the learning speed of TSVM approximately four times faster than that of the standard SVM. However the same penalties are given to the samples, which reduces the classification accuracy of TSVM. To improve the classification accuracy, rough v-TSVM was proposed, where different penalties are given to the negative samples depending on their different positions when constructing separating hyper-plane for the positive samples. But the local information of positive samples is not exploited, and each positive sample shares the same weights in it. In fact, they have different effects on the separating hyper-planes. Inspired by the studies above, we propose a K-nearest neighbor (KNN)-based weighted rough v-twin support vector machine (Weighted rough v-TSVM) in this paper, in which not only different penalties are given to one class of samples, but also different weights are given to the other class of samples. So weighted rough v-TSVM yields higher testing accuracy in comparison with the state-of-the-art algorithms. Moreover, weighted rough v-TSVM costs lower than other algorithms since some redundant constraints are deleted. In addition, the influence of different number K of clusters is also discussed in this paper. Numerical experiments on forty-two benchmark datasets are performed to investigate the validity of our proposed algorithm. Experimental results show the effectiveness of our proposed algorithm.
机译:孪生支持向量分类(TSVM)通过解决一对较小的二次规划问题(QPP)而不是传统支持向量机(SVM)中的单个大问题来找到两个非平行超平面,这使得学习速度更快。 TSVM大约是标准SVM的四倍。但是,对样本给予相同的惩罚,这降低了TSVM的分类准确性。为了提高分类精度,提出了粗糙的v-TSVM,当为阳性样本构造分离的超平面时,根据阴性样本的不同位置对它们进行不同的惩罚。但是,没有利用阳性样本的本地信息,每个阳性样本在其中具有相同的权重。实际上,它们对分离的超平面有不同的影响。受以上研究的启发,本文提出了一种基于K近邻(KNN)的加权粗v-twin支持向量机(Weightedough v-TSVM),其中不仅对一类样本给予了不同的惩罚,但另一类样本的权重也不同。因此,与最新算法相比,加权粗v-TSVM具有更高的测试精度。此外,由于删除了一些冗余约束,因此加权粗v-TSVM的成本比其他算法低。此外,本文还讨论了不同数目的簇的影响。进行了42个基准数据集的数值实验,以研究我们提出的算法的有效性。实验结果表明了该算法的有效性。

著录项

  • 来源
    《Knowledge-Based Systems》 |2014年第11期|303-313|共11页
  • 作者

    Yitian Xu; Jia Yu; Yuqun Zhang;

  • 作者单位

    College of Science, China Agricultural University, Beijing 100083, China,Department of Computer Science and Engineering, Arizona State University, Tempe, AZ 85287, USA;

    College of Science, China Agricultural University, Beijing 100083, China;

    College of Science, China Agricultural University, Beijing 100083, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    TSVM; Rough v-TSVM; K-nearest neighbor; Weight; Local information;

    机译:TSVM;粗糙的v-TSVM;K近邻;重量;当地信息;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号