首页> 外文期刊>Knowledge-Based Systems >A new cluster validity measure based on general type-2 fuzzy sets: Application in gene expression data clustering
【24h】

A new cluster validity measure based on general type-2 fuzzy sets: Application in gene expression data clustering

机译:基于通用第二类模糊集的聚类有效性新度量:在基因表达数据聚类中的应用

获取原文
获取原文并翻译 | 示例

摘要

As a widespread pattern recognition technique, clustering has been widely used in various disciplines including: science, engineering, medicine, etc. One the latest progresses in this field is introduction of general type-2 fuzzy sets and the new clustering method represented on its basis called general type-2 fuzzy c-means. In this paper, the aim is to develop a robust and accurate similarity measure between general type-2 fuzzy sets. Utilizing philosophy behind this developed similarity measure, the first exclusively developed general type-2 fuzzy cluster validity index will be proposed to be used for finding the optimal number of clusters through using general type-2 fuzzy c-means. To verify quality of the proposed approaches, several heavy computations have been conducted on artificial datasets and also real gene expression datasets. Numerical comparisons reveal robustness and quality of the proposed approach compared to several similar approaches in the literature.
机译:作为一种广泛的模式识别技术,聚类已广泛应用于科学,工程,医学等各个领域。该领域的最新进展之一是引入了通用的2型模糊集,并在此基础上提出了新的聚类方法。称为一般2型模糊c均值。本文的目的是开发一种通用的第二类模糊集之间的鲁棒且准确的相似性度量。利用这种已开发的相似性度量背后的原理,将提出第一个专门开发的通用2型模糊聚类有效性指标,以通过使用通用2型模糊c均值来找到最佳聚类数。为了验证所提出方法的质量,已经对人工数据集以及真实基因表达数据集进行了数次繁重的计算。数值比较表明,与文献中的几种类似方法相比,该方法具有较强的鲁棒性和质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号