首页> 外文期刊>Knowledge-Based Systems >A gradient approach for value weighted classification learning in naive Bayes
【24h】

A gradient approach for value weighted classification learning in naive Bayes

机译:朴素贝叶斯价值加权分类学习的梯度方法

获取原文
获取原文并翻译 | 示例

摘要

Feature weighting has been an important topic in classification learning algorithms. In this paper, we propose a new paradigm of assigning weights in classification learning, called value weighting method. While the current weighting methods assign a weight to each feature, we assign a different weight to the values of each feature. The proposed method is implemented in the context of naive Bayesian learning, and optimal weights of feature values are calculated using a gradient approach. The performance of naive Bayes learning with value weighting method is compared with that of other state-of-the-art methods for a number of datasets. The experimental results show that the value weighting method could improve the performance of naive Bayes significantly. (C) 2015 Elsevier B.V. All rights reserved.
机译:特征加权已成为分类学习算法中的重要主题。在本文中,我们提出了一种在分类学习中分配权重的新范式,称为值加权法。尽管当前的加权方法为每个特征分配了权重,但我们为每个特征的值分配了不同的权重。所提出的方法是在朴素贝叶斯学习的背景下实现的,并且使用梯度方法来计算特征值的最佳权重。对于许多数据集,使用价值加权方法进行朴素贝叶斯学习的性能与其他最新方法的性能进行了比较。实验结果表明,价值加权方法可以显着提高朴素贝叶斯的性能。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号