首页> 外文期刊>Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment >A supervised machine learning approach using naive Gaussian Bayes classification for shape-sensitive detector pulse discrimination in positron annihilation lifetime spectroscopy (PALS)
【24h】

A supervised machine learning approach using naive Gaussian Bayes classification for shape-sensitive detector pulse discrimination in positron annihilation lifetime spectroscopy (PALS)

机译:使用朴素高斯贝叶斯分类的有监督机器学习方法,用于正电子ni没寿命谱(PALS)中的形状敏感探测器脉冲判别

获取原文
获取原文并翻译 | 示例

摘要

The acquisition of high-quality and non-artefact afflicted positron lifetime spectra is crucial for a profound analysis, i.e. the correct lifetime spectra decomposition for retrieving the true information. Since the introduction of digital positron lifetime spectrometers, this is generally realized by applying detector pulse discrimination with the help of software-based pulse filtering regarding area and/or shape of the detector pulses.Here, we present a novel approach for shape-sensitive detector pulse discrimination applying supervised machine learning (ML) based on a naive Bayes classification model using a normally distributed likelihood. In general, naive Bayes methods find wide application for many real-world problems such as famously applied for email spam filtering, text categorization or document classification. Their algorithms are relatively simple to implement and, moreover, perform extremely fast compared to more sophisticated methods in training and predicting on high-dimensional datasets, i.e. detector pulses. In this study we show that a remarkable low number of less than 20 labelled training pulses is sufficient to achieve comparable results as of applying physically filtering. Hence, our approach represents a potential alternative.
机译:获得高质量且无伪影的正电子寿命谱对于深入分析至关重要,即正确的寿命谱分解以获取真实信息至关重要。自从引入数字正电子寿命谱仪以来,这通常是通过对检测器脉冲的面积和/或形状进行基于软件的脉冲滤波来应用检测器脉冲识别来实现的。基于朴素贝叶斯分类模型的正态分布似然,应用监督机器学习(ML)进行脉冲识别。通常,朴素的贝叶斯方法在许多现实问题中都有广泛的应用,例如著名的电子邮件垃圾邮件过滤,文本分类或文档分类。与更复杂的方法相比,它们的算法易于实现,并且在高维数据集(即检测器脉冲)上进行训练和预测时,其执行速度非常快。在这项研究中,我们表明,少于20个标记的训练脉冲的数量非常少,足以获得与应用物理滤波相比可比的结果。因此,我们的方法代表了一种潜在的选择。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号