首页> 外文期刊>Knowledge-Based Systems >Incremental updating approximations in probabilistic rough sets under the variation of attributes
【24h】

Incremental updating approximations in probabilistic rough sets under the variation of attributes

机译:属性变化下概率粗糙集的增量更新近似

获取原文
获取原文并翻译 | 示例

摘要

The attribute set in an information system evolves in time when new information arrives. Both lower and upper approximations of a concept will change dynamically when attributes vary. Inspired by the former incremental algorithm in Pawlak rough sets, this paper focuses on new strategies of dynamically updating approximations in probabilistic rough sets and investigates four propositions of updating approximations under probabilistic rough sets. Two incremental algorithms based on adding attributes and deleting attributes under probabilistic rough sets are proposed, respectively. The experiments on five data sets from UCI and a genome data with thousand attributes validate the feasibility of the proposed incremental approaches.
机译:信息系统中设置的属性会在新信息到达时随时间变化。当属性变化时,概念的上下近似都会动态变化。受到Pawlak粗糙集中以前的增量算法的启发,本文重点研究了动态更新概率粗糙集中近似值的新策略,并研究了概率粗糙集下更新近似值的四个命题。提出了两种基于概率粗糙集的属性添加和删除的增量算法。对来自UCI的五个数据集和具有数千个属性的基因组数据进行的实验验证了所提出的增量方法的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号