首页> 外文期刊>Knowledge-Based Systems >Incremental updating approximations in dominance-based rough sets approach under the variation of the attribute set
【24h】

Incremental updating approximations in dominance-based rough sets approach under the variation of the attribute set

机译:属性集变化下基于优势的粗糙集方法中的增量更新近似

获取原文
获取原文并翻译 | 示例

摘要

Dominance-based Rough Sets Approach (DRSA) is a generalized model of the classical Rough Sets Theory (RST) which may handle information with preference-ordered attribute domain. The attribute set in the information system may evolve over time. Approximations of DRSA used to induce decision rules need updating for knowledge discovery and other related tasks. We firstly introduce a kind of dominance matrix to calculate P-dominating sets and P-dominated sets in DRSA. Then we discuss the principles of updating P-dominating sets and P-dominated sets when some attributes are added into or deleted from the attribute set P. Furthermore, we propose incremental approaches and algorithms for updating approximations in DRSA. The proposed incremental approaches effectively reduce the computational time in comparison with the non-incremental approach are validated by experimental evaluations on different data sets from UCI.
机译:基于优势的粗糙集方法(DRSA)是经典粗糙集理论(RST)的通用模型,可以处理具有优先级排序属性域的信息。信息系统中设置的属性可能会随着时间而发展。用于诱导决策规则的DRSA近似值需要为知识发现和其他相关任务进行更新。我们首先引入一种优势矩阵来计算DRSA中的P占优集和P占优集。然后,我们讨论了将某些属性添加到属性集P或从属性集P中删除时更新P支配集和P支配集的原理。此外,我们提出了用于更新DRSA中的近似值的增量方法和算法。通过对UCI的不同数据集进行实验评估,验证了所提出的增量方法与非增量方法相比有效地减少了计算时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号