首页> 外文期刊>Knowledge-Based Systems >Classification with test costs and background knowledge
【24h】

Classification with test costs and background knowledge

机译:带有测试成本和背景知识的分类

获取原文
获取原文并翻译 | 示例

摘要

We propose a novel approach to the problem of the classification with test costs understood as costs of obtaining attribute values of classified examples. Many existing approaches construct classifiers in order to control the tradeoff between test costs and the prediction accuracy (or misclassification costs). The aim of the proposed method is to reduce test costs while maintaining of the prediction accuracy of a classifier. We assume that attribute values are represented at different levels of abstraction and model domain background knowledge. Our approach sequentially explores these levels during classification - in each iteration it selects and conducts a test that precises the representation of a classified example (i.e., acquires an attribute value), invokes a naive Bayes classifier for this new representation and checks the classifier's outcome to decide whether this iterative process can be stopped. The selection of the test in each iteration takes into account the possible improvement of the prediction accuracy and the cost of this test. We show that the prediction accuracy obtained for classified examples represented precisely (i.e., when all the tests have been conducted and all specific attribute values have been acquired) can be achieved for a much smaller number of tests (i.e., when not all specific attribute values have been acquired). Moreover, we show that without levels of abstraction and with uniform test costs our method can be used for selecting features and it is competitive to popular feature selection schemes: filter and wrapper. (C) 2015 Elsevier B.V. All rights reserved.
机译:我们提出一种新的方法来解决分类问题,将测试成本理解为获得分类示例属性值的成本。许多现有方法构造分类器,以控制测试成本与预测准确性(或错误分类成本)之间的折衷。所提出的方法的目的是在保持分类器的预测精度的同时降低测试成本。我们假设属性值以不同的抽象级别和模型领域背景知识表示。我们的方法在分类过程中顺序探索这些级别-在每次迭代中,它都会选择并进行测试,以精确化已分类示例的表示形式(即获取属性值),为该新表示形式调用朴素的贝叶斯分类器,并检查分类器的结果以决定是否可以停止此迭代过程。在每次迭代中测试的选择都考虑到了预测准确性的可能提高和该测试的成本。我们表明,对于数量较少的测试(即,当并非所有特定的属性值时),可以准确地代表分类示例获得的预测准确度(即,当进行了所有测试并且获得了所有特定的属性值时)已被收购)。此外,我们表明,在没有抽象层次和统一测试成本的情况下,我们的方法可用于选择特征,并且与流行的特征选择方案(过滤器和包装器)相比具有竞争力。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号