首页> 外文期刊>Knowledge-Based Systems >A survey of serendipity in recommender systems
【24h】

A survey of serendipity in recommender systems

机译:推荐系统中的偶然性调查

获取原文
获取原文并翻译 | 示例

摘要

Recommender systems use past behaviors of users to suggest items. Most tend to offer items similar to the items that a target user has indicated as interesting. As a result, users become bored with obvious suggestions that they might have already discovered. To improve user satisfaction, recommender systems should offer serendipitous suggestions: items not only relevant and novel to the target user, but also significantly different from the items that the user has rated. However, the concept of serendipity is very subjective and serendipitous encounters are very rare in real-world scenarios, which makes serendipitous recommendations extremely difficult to study. To date, various definitions and evaluation metrics to measure serendipity have been proposed, and there is no wide consensus on which definition and evaluation metric to use. In this paper, we summarize most important approaches to serendipity in recommender systems, compare different definitions and formalizations of the concept, discuss serendipity-oriented recommendation algorithms and evaluation strategies to assess the algorithms, and provide future research directions based on the reviewed literature. (C) 2016 Elsevier B.V. All rights reserved.
机译:推荐系统使用用户过去的行为来建议项目。大多数倾向于提供与目标用户指示为有趣的项目相似的项目。结果,用户对可能已经发现的明显建议感到无聊。为了提高用户满意度,推荐系统应该提供偶然的建议:不仅与目标用户相关且新颖的项目,而且与用户已评分的项目也存在显着差异。但是,偶然性的概念非常主观,在现实世界中很少遇到偶然性的遭遇,这使得偶然性建议非常难以研究。迄今为止,已经提出了用于测量偶然性的各种定义和评估指标,并且对于使用哪种定义和评估指标尚未达成广泛共识。在本文中,我们总结了推荐系统中最重要的突发事件处理方法,比较了概念的不同定义和形式化,讨论了面向突发事件的推荐算法和评估策略以评估算法,并根据所审查的文献提供了未来的研究方向。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号