首页> 外文期刊>Knowledge-Based Systems >Spatially-variant noise filtering in magnetic resonance imaging: A consensus-based approach
【24h】

Spatially-variant noise filtering in magnetic resonance imaging: A consensus-based approach

机译:磁共振成像中的空间变量噪声滤波:基于共识的方法

获取原文
获取原文并翻译 | 示例

摘要

In order to accelerate the acquisition process in multiple-coil Magnetic Resonance scanners, parallel techniques were developed. These techniques reduce the acquisition time via a sub-sampling of the k-space and a reconstruction process. From a signal and noise perspective, the use of a acceleration techniques modify the structure of the noise within the image. In the most common algorithms, like SENSE, the final magnitude image after the reconstruction is known to follow a Rician distribution for each pixel, just like single coil systems. However, the noise is spatially non-stationary, i.e. the variance of noise becomes x-dependent. This effect can also be found in magnitude images due to other processing inside the scanner. In this work we propose a method to adapt well-known noise filtering techniques initially designed to deal with stationary noise to the case of spatially variant Rician noise. The method copes with inaccurate estimates of variant noise patterns in the image, showing its robustness in realistic cases. The method employs a consensus strategy in conjunction with a set of aggregation functions and a penalty function. Multiple possible outputs are generated for each pixel assuming different unknown input parameters. The consensus approach merges them into a unique filtered image. As a filtering technique, we have selected the Linear Minimum Mean Square Error (LMMSE) estimator for Rician data, which has been used to test our methodology due to its simplicity and robustness. Results with synthetic and in vivo data confirm the good behavior of our approach. (C) 2016 Elsevier B.V. All rights reserved.
机译:为了加快多线圈磁共振扫描仪的采集过程,开发了并行技术。这些技术通过对k空间进行二次采样和重构过程来减少采集时间。从信号和噪声的角度来看,使用加速技术会修改图像中噪声的结构。在像SENSE这样的最常见算法中,已知重建后的最终幅值图像遵循每个像素的Rician分布,就像单线圈系统一样。然而,噪声在空间上是不平稳的,即,噪声的方差变得依赖于x。由于扫描仪内部的其他处理,在幅值图像中也可以发现这种效果。在这项工作中,我们提出了一种方法,使最初设计用于处理平稳噪声的众所周知的噪声过滤技术适应空间变化的Rician噪声的情况。该方法解决了图像中各种噪声模式的不准确估计,从而显示了其在实际情况下的鲁棒性。该方法采用与一组聚合函数和惩罚函数结合的共识策略。假设不同的未知输入参数,则为每个像素生成多个可能的输出。共识方法将它们合并为唯一的过滤图像。作为一种滤波技术,我们选择了用于Rician数据的线性最小均方误差(LMMSE)估计器,该估计器由于其简单性和鲁棒性而被用于测试我们的方法。合成和体内数据的结果证实了我们方法的良好行为。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号