首页> 外文期刊>Knowledge-Based Systems >Detecting and predicting the topic change of Knowledge-based Systems: A topic-based bibliometric analysis from 1991 to 2016
【24h】

Detecting and predicting the topic change of Knowledge-based Systems: A topic-based bibliometric analysis from 1991 to 2016

机译:检测和预测基于知识的系统的主题更改:1991年至2016年基于主题的文献计量分析

获取原文
获取原文并翻译 | 示例

摘要

The journal Knowledge-based Systems (KnoSys) has been published for over 25 years, during which time its main foci have been extended to a broad range of studies in computer science and artificial intelligence. Answering the questions: "What is the KnoSys community interested in?" and "How does such interest change over time?" are important to both the editorial board and audience of KnoSys. This paper conducts a topic-based bibliometric study to detect and predict the topic changes of KnoSys from 1991 to 2016. A Latent Dirichlet Allocation model is used to profile the hotspots of KnoSys and predict possible future trends from a probabilistic perspective. A model of scientific evolutionary pathways applies a learning-based process to detect the topic changes of KnoSys in sequential time slices. Six main research areas of KnoSys are identified, i.e., expert systems, machine learning, data mining, decision making, optimization, and fuzzy, and the results also indicate that the interest of KnoSys communities in the area of computational intelligence is raised, and the ability to construct practical systems through knowledge use and accurate prediction models is highly emphasized. Such empirical insights can be used as a guide for KnoSys submissions. (C) 2017 Elsevier B.V. All rights reserved.
机译:基于知识的系统(KnoSys)杂志已经出版了25多年,在此期间,其主要研究领域已扩展到计算机科学和人工智能领域的广泛研究。回答问题:“ KnoSys社区对什么感兴趣?”和“这种兴趣随着时间如何变化?”对于KnoSys的编辑委员会和观众都很重要。本文进行了基于主题的文献计量研究,以检测和预测1991年至2016年KnoSys的主题变化。使用潜在Dirichlet分配模型来描绘KnoSys的热点,并从概率的角度预测未来的可能趋势。科学进化途径模型采用基于学习的过程来检测KnoSys在连续时间片中的主题变化。确定了KnoSys的六个主要研究领域,即专家系统,机器学习,数据挖掘,决策,优化和模糊化,结果还表明KnoSys社区对计算智能领域的兴趣提高了,高度强调了通过使用知识和准确的预测模型来构建实际系统的能力。这样的经验见解可以用作KnoSys提交的指南。 (C)2017 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2017年第1期|255-268|共14页
  • 作者单位

    Univ Technol Sydney, Decis Syst & E Serv Intelligence Res Lab, Ctr Artificial Intelligence, Fac Engn & Informat Technol, Sydney, NSW, Australia;

    Univ Technol Sydney, Decis Syst & E Serv Intelligence Res Lab, Ctr Artificial Intelligence, Fac Engn & Informat Technol, Sydney, NSW, Australia;

    Univ Technol Sydney, Decis Syst & E Serv Intelligence Res Lab, Ctr Artificial Intelligence, Fac Engn & Informat Technol, Sydney, NSW, Australia;

    Univ Technol Sydney, Decis Syst & E Serv Intelligence Res Lab, Ctr Artificial Intelligence, Fac Engn & Informat Technol, Sydney, NSW, Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Topic analysis; Topic detection and tracking; Bibliometrics; Text mining; Knowledge-based Systems;

    机译:主题分析;主题检测与跟踪;文献计量学;文本挖掘;基于知识的系统;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号