首页> 外文期刊>Knowledge-Based Systems >Multi-objective differential evolution with dynamic covariance matrix learning for multi-objective optimization problems with variable linkages
【24h】

Multi-objective differential evolution with dynamic covariance matrix learning for multi-objective optimization problems with variable linkages

机译:可变联动的多目标优化问题的动态协方差矩阵学习的多目标差分进化

获取原文
获取原文并翻译 | 示例

摘要

Recently, many multi-objective differential evolution versions (MODEs) have been developed by incorporating the search engine of differential evolution (DE) and multi-objective processing mechanisms. However, most existing MODEs perform poorly in solving multi-objective optimization problems(MOPs) with variable linkages. The cause of this poor performance is the rotational variability of binomial crossover operator (BCO), which is not conducive to making simultaneous progress across all variables within a solution vector in the search for such MOPs. To alleviate the limitation, dynamic covariance matrix learning (DCML) based on the information distribution of the entire or a portion of the population is proposed to establish a proper coordinate system for the BCO by eigen decomposition. In this method, the rotational invariance of DE can be enhanced to a certain extent by releasing the interactions among the variables; thus, it is useful for MODEs to better balance their exploration and exploitation abilities. By integrating the DCML into existing MODEs, a class of new MODEs, which are called MODEs + DCML for short, are presented in this study. For comparison purposes, the proposed DCML strategy is applied to four commonly used MODEs. Twenty-nine benchmark problems with variable linkages are selected as the test suite to evaluate the performance of the proposed MODEs + DCML. The experimental results show that the proposed DCML can significantly improve the performance of the state-of-the-art MODEs in most test functions. (C) 2017 Elsevier B.V. All rights reserved.
机译:最近,通过结合差分进化(DE)搜索引擎和多目标处理机制,开发了许多多目标差分进化版本(MODE)。但是,大多数现有的MODE在解决具有可变链接的多目标优化问题(MOP)方面的表现都很差。这种性能不佳的原因是二项式交叉算子(BCO)的旋转可变性,这不利于在求解此类MOP的求解向量内的所有变量上同时取得进展。为了减轻这种局限性,提出了基于全部或部分总体信息分布的动态协方差矩阵学习(DCML),以通过特征分解为BCO建立合适的坐标系。该方法通过释放变量之间的相互作用,可以在一定程度上增强DE的旋转不变性。因此,对MODEs更好地平衡其探索和开发能力很有用。通过将DCML集成到现有MODE中,本研究提出了一类新的MODE,简称为MODEs + DCML。为了进行比较,将建议的DCML策略应用于四个常用MODE。选择29个具有可变链接的基准测试问题作为测试套件,以评估所提出的MODEs + DCML的性能。实验结果表明,提出的DCML可以在大多数测试功能中显着提高最新MODE的性能。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号