首页> 外文期刊>Knowledge-Based Systems >An one-class classification support vector machine model by interval-valued training data
【24h】

An one-class classification support vector machine model by interval-valued training data

机译:基于区间值训练数据的一类分类支持向量机模型

获取原文
获取原文并翻译 | 示例

摘要

A modification of the well-known one-class classification support vector machine (OCC SVM) dealing with interval-valued or set-valued training data is proposed. Its main idea is to represent every interval of training data by a finite set of precise data with imprecise weights. This representation is based on replacement of the interval-valued expected risk produced by interval-valued data with the interval-valued expected risk produced by imprecise weights or sets of weights. In other words, the interval uncertainty is replaced with the imprecise weight or probabilistic uncertainty. It is shown how constraints for the imprecise weights are incorporated into dual quadratic programming problems which can be viewed as extensions of the well-known OCC SVM models. Numerical examples with synthetic and real interval valued training data illustrate the proposed approach and investigate its properties. (C) 2016 Elsevier B.V. All rights reserved.
机译:提出了一种著名的一类分类支持向量机(OCC SVM)的修改方法,该方法处理区间值或集值训练数据。其主要思想是用有限的精确数据(权重不精确)来表示训练数据的每个间隔。该表示基于用不正确的权重或权重集产生的区间值期望风险替换区间值数据产生的区间值期望风险。换句话说,将区间不确定性替换为不精确的权重或概率不确定性。它显示了不精确权重的约束如何纳入​​双重二次规划问题,可以看作是众所周知的OCC SVM模型的扩展。带有合成和实数区间值训练数据的数值示例说明了该方法并研究了其性能。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号