首页> 外文期刊>Knowledge-Based Systems >Protein secondary structure prediction by using deep learning method
【24h】

Protein secondary structure prediction by using deep learning method

机译:深度学习法预测蛋白质二级结构

获取原文
获取原文并翻译 | 示例

摘要

The prediction of protein structures directly from amino acid sequences is one of the biggest challenges in computational biology. It can be divided into several independent sub-problems in which protein secondary structure (SS) prediction is fundamental. Many computational methods have been proposed for SS prediction problem. Few of them can model well both the sequence-structure mapping relationship between input protein features and SS, and the interaction relationship among residues which are both important for SS prediction. In this paper, we proposed a deep recurrent encoder-decoder networks called Secondary Structure Recurrent Encoder-Decoder Networks (SSREDNs) to solve this SS prediction problem. Deep architecture and recurrent structures are employed in the SSREDNs to model both the complex nonlinear mapping relationship between input protein features and SS, and the mutual interaction among continuous residues of the protein chain. A series of techniques are also used in this paper to refine the model's performance. The proposed model is applied to the open dataset CullPDB and CB513. Experimental results demonstrate that our method can improve both Q3 and Q8 accuracy compared with some public available methods. For Q8 prediction problem, it achieves 68.20% and 73.1% accuracy on CB513 and CullPDB dataset in fewer epochs better than the previous state-of-art method. (C) 2016 Elsevier B.V. All rights reserved.
机译:直接从氨基酸序列预测蛋白质结构是计算生物学中的最大挑战之一。它可以分为几个独立的子问题,其中蛋白质二级结构(SS)的预测至关重要。已经提出了许多用于SS预测问题的计算方法。他们中很少有人能很好地建模输入蛋白质特征和SS之间的序列-结构映射关系,以及残基之间的相互作用关系,这对于SS预测都很重要。在本文中,我们提出了一种称为“二级结构递归编码器-解码器网络”(SSREDN)的深度递归编码器-解码器网络,以解决此SS预测问题。 SSREDN中采用深层结构和递归结构来对输入蛋白质特征和SS之间的复杂非线性映射关系以及蛋白质链的连续残基之间的相互作用进行建模。本文还使用了一系列技术来完善模型的性能。将该模型应用于开放数据集CullPDB和CB513。实验结果表明,与一些公共方法相比,我们的方法可以同时提高Q3和Q8的准确性。对于Q8预测问题,与以前的最新方法相比,它在CB513和CullPDB数据集上的准确率达到了68.20%和73.1%。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号