首页> 外文期刊>Knowledge-Based Systems >A new improved fruit fly optimization algorithm IAFOA and its application to solve engineering optimization problems
【24h】

A new improved fruit fly optimization algorithm IAFOA and its application to solve engineering optimization problems

机译:一种新的改进果蝇优化算法IAFOA及其在解决工程优化问题中的应用

获取原文
获取原文并翻译 | 示例

摘要

Nature-inspired algorithms are widely used in mathematical and engineering optimization. As one of the latest swarm intelligence-based methods, fruit fly optimization algorithm (FOA) was proposed inspired by the foraging behavior of fruit fly. In order to overcome the shortcomings of original FOA, a new improved fruit fly optimization algorithm called IAFOA is presented in this paper. Compared with original FOA, IAFOA includes four extra mechanisms: 1) adaptive selection mechanism for the search direction, 2) adaptive adjustment mechanism for the iteration step value, 3) adaptive crossover and mutation mechanism, and 4) multi-sub-swarm mechanism. The adaptive selection mechanism for the search direction allows the individuals to search for global optimum based on the experience of the previous iteration generations. According to the adaptive adjustment mechanism, the iteration step value can change automatically based on the iteration number and the best smell concentrations of different generations. Besides, the adaptive crossover and mutation mechanism introduces crossover and mutation operations into IAFOA, and advises that the individuals with different fitness values should be operated with different crossover and mutation probabilities. The multi-sub-swarm mechanism can spread optimization information among the individuals of the two sub-swarms, and quicken the convergence speed. In order to take an insight into the proposed IAFOA, computational complexity analysis and convergence analysis are given. Experiment results based on a group of 29 benchmark functions show that IAFOA has the best performance among several intelligent algorithms, which include five variants of FOA and five advanced intelligent optimization algorithms. Then, IAFOA is used to solve three engineering optimization problems for the purpose of verifying its practicability, and experiment results show that IAFOA can generate the best solutions compared with other ten algorithms. (C) 2017 Elsevier B.V. All rights reserved.
机译:受自然启发的算法广泛用于数学和工程优化。作为最新的基于群体智能的方法,果蝇优化算法(FOA)是受果蝇觅食行为启发而提出的。为了克服原始FOA的缺点,提出了一种新的改进的果蝇优化算法IAFAA。与原始FOA相比,IAFOA包括四种额外的机制:1)搜索方向的自适应选择机制; 2)迭代步长值的自适应调整机制; 3)自适应交叉和变异机制;以及4)多子群机制。用于搜索方向的自适应选择机制允许个人根据前代迭代的经验来搜索全局最优。根据自适应调整机制,迭代步长值可以根据迭代次数和不同世代的最佳气味浓度自动更改。此外,自适应交叉和变异机制将交叉和变异操作引入了IAFOA,并建议具有不同适应度值的个体应以不同的交叉和变异概率进行操作。多子群机制可以在两个子群的个体之间传播优化信息,并加快收敛速度​​。为了深入了解所提出的IAFOA,给出了计算复杂度分析和收敛性分析。基于一组29个基准函数的实验结果表明,IAFOA在几种智能算法中表现最佳,其中包括5种FOA变体和5种高级智能优化算法。然后,为了验证其实用性,使用IAFOA解决了三个工程优化问题,实验结果表明,与其他十种算法相比,IAFOA可以产生最佳的解决方案。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号