首页> 外文期刊>Key Engineering Materials >Behind the quantum and size effects: broken-bond-induced local strain and skin-depth densified quantum trapping of charge and energy
【24h】

Behind the quantum and size effects: broken-bond-induced local strain and skin-depth densified quantum trapping of charge and energy

机译:量子和尺寸效应的背后:断裂键诱导的局部应变和趋肤深度的电荷和能量的量子陷阱

获取原文
获取原文并翻译 | 示例
           

摘要

Shrinking the size of a solid down to nanometer scale is indeed fascinating, which makes all the otherwise constant physical quantities to be tunable such as the Young's modulus, dielectric constant, melting point, etc. The variation of size also generates novel properties that can hardly be seen in the bulk such as the conductor-insulator and nonmagnetic-magnetic transition of noble metals at the nanoscale. Although the physics of materials at the nanoscale has been extensively investigated, the laws governing the energetic and dynamic behavior of electrons at such a scale and their consequences on the tunable physical properties of nanostructures have not been well understood [C. Q. Sun, Prog Solid State Chem 35, 1-159 (2007); Prog Mater Sci 54, 179-307 (2009)]. The objective of the contribution is to update the recent progress in dealing with the coordination-resolved energetic and dynamic behavior of bonds in the low-dimensional systems with consideration of the joint effect of temperature and pressure. It is shown that the broken-bond-induced local strain and the associated charge and energy quantum trapping at the defect sites perturbs the atomic cohesive energy, electroaffinity, the Hamiltonian and the associated properties of entities ranging from point defects, surfaces, nanocavities and nanostructures. Application of the theories to observations has led to consistent understanding of the behavior of nanometer-sized materials and the interdependence of these entities as well as the means of determining the bond energy through the temperature-dependent measurements.
机译:将固体的尺寸缩小到纳米级确实令人着迷,这使得所有其他恒定的物理量(例如杨氏模量,介电常数,熔点等)都可以调节。尺寸的变化还产生了几乎无法提供的新特性可以在整体中看到,例如导体-绝缘体和贵金属在纳米级的非磁性-磁性过渡。尽管已经对纳米级材料的物理学进行了广泛研究,但对于这种级别的电子的能量和动态行为及其对纳米结构的可调谐物理特性的影响的定律还没有得到很好的理解[C. Q.Sun,Prog Solid State Chem 35,1-159(2007); Prog Mater Sci 54,179-307(2009)。贡献的目的是考虑到温度和压力的共同影响,更新在处理低维系统中键的配位分解的能态和动态行为方面的最新进展。结果表明,断裂键引起的局部应变以及在缺陷位点处的相关电荷和能量量子陷阱会扰乱原子的内聚能,电亲和力,哈密顿量以及从点缺陷,表面,纳米腔和纳米结构等实体的相关属性。将该理论应用于观测已经导致人们对纳米级材料的行为以及这些实体的相互依赖性以及通过依赖于温度的测量确定键能的手段有了一致的理解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号