首页> 外文期刊>Journal of web semantics: >Large-scale structural and textual similarity-based mining of knowledge graph to predict drug-drug interactions
【24h】

Large-scale structural and textual similarity-based mining of knowledge graph to predict drug-drug interactions

机译:基于大规模结构和文本相似性的知识图挖掘,以预测药物相互作用

获取原文
获取原文并翻译 | 示例

摘要

Drug-Drug Interactions (DDIs) are a major cause of preventable Adverse Drug Reactions (ADRs), causing a significant burden on the patients' health and the healthcare system. It is widely known that clinical studies cannot sufficiently and accurately identify DDIs for new drugs before they are made available on the market. In addition, existing public and proprietary sources of DDI information are known to be incomplete and/or inaccurate and so not reliable. As a result, there is an emerging body of research on in-silico prediction of drug-drug interactions. In this paper, we present Tiresias, a large-scale similarity-based framework that predicts DDIs through link prediction. Tiresias takes in various sources of drug-related data and knowledge as inputs, and provides DDI predictions as outputs. The process starts with semantic integration of the input data that results in a knowledge graph describing drug attributes and relationships with various related entities such as enzymes, chemical structures, and pathways. The knowledge graph is then used to compute several similarity measures between all the drugs in a scalable and distributed framework. In particular, Tiresias utilizes two classes of features in a knowledge graph: local and global features. Local features are derived from the information directly associated to each drug (i.e., one hop away) while global features are learnt by minimizing a global loss function that considers the complete structure of the knowledge graph. The resulting similarity metrics are used to build features for a large-scale logistic regression model to predict potential DDIs. We highlight the novelty of our proposed Tiresias and perform thorough evaluation of the quality of the predictions. The results show the effectiveness of Tiresias in both predicting new interactions among existing drugs as well as newly developed drugs. (c) 2017 Elsevier B.V. All rights reserved.
机译:药物相互作用(DDI)是可预防的药物不良反应(ADR)的主要原因,给患者的健康和医疗保健系统造成了沉重负担。众所周知,在新药投放市场之前,临床研究无法充分,准确地识别DDI。另外,已知DDI信息的现有公共和专有来源不完整和/或不准确,因此不可靠。结果,出现了关于药物相互作用的计算机内预测的新兴研究机构。在本文中,我们介绍了Tiresias,这是一个大型的基于相似度的框架,可通过链接预测来预测DDI。 Tiresias吸收了与毒品有关的数据和知识的各种来源作为输入,并提供了DDI预测作为输出。该过程从输入数据的语义集成开始,这将生成一个知识图,该图描述药物属性以及与各种相关实体(例如酶,化学结构和途径)的关系。知识图然后用于在可扩展和分布式框架中计算所有药物之间的几种相似性度量。特别是,Tiresias利用知识图中的两类特征:局部特征和全局特征。局部特征是从与每种药物直接相关的信息中得出的(即,距离一跳),而全局特征是通过最小化考虑知识图完整结构的全局损失函数来学习的。所得的相似性度量用于构建大型逻辑回归模型的功能,以预测潜在的DDI。我们强调了我们提出的Tiresias的新颖性,并对预测质量进行了全面评估。结果表明,Tiresias在预测现有药物和新开发药物之间的新相互作用方面均有效。 (c)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号