首页> 外文期刊>Journal of visualization >Helmholtz-Hodge decomposition-based 2D and 3D ocean surface current visualization for mesoscale eddy detection
【24h】

Helmholtz-Hodge decomposition-based 2D and 3D ocean surface current visualization for mesoscale eddy detection

机译:基于Helmholtz-Hodge分解的2D和3D海洋表面电流可视化,用于中尺度涡流检测

获取原文
获取原文并翻译 | 示例

摘要

Ocean surface current (or ocean flow) visualization plays a significant role in the understanding of dynamical processes of ocean. It has been a hot research topic in both computer science and oceanography. Ocean surface current is a turbulent flow field mixing of multi-scale ocean dynamics such as large-scale ocean circulations (100 approximate to), mesoscale eddies (10-100), submesoscale processes (1-10). Mesoscale eddies, which are strong but short-life movement relative to the large-scale ocean circulations, have great importance on the transportation of ocean water masses, momentum and energy. However, their detection and recognition, which are treated as the foundation of exploring their dynamical mechanisms, is still a challenging issue. For one thing, in the mixed ocean flow field, different ocean flows depended and influence with each other making existing methods difficult to identify among them. For another, mesoscale eddies are active signals on the ocean. They may change their forms and velocities at any time. This challenges existing works to deal with their boundary ambiguity and unremitting transitions. To solve these problems, this paper proposes a novel 2D and 3D ocean surface current visualization approach based on an amended Helmholtz-Hodge decomposition (HHD), which can be widely used for mesoscale eddy detection. In our method, HHD decomposes each mixed ocean flow field to two components: curl component and divergence component. Different ocean flows can be represented by these two components independently. In addition, to improve the performance of eddy identification and to reveal the 3D structure of ocean flows simultaneously, HHD transforms the 2D ocean flow field to 3D potential surfaces. Finally, comprehensive experiments are performed on both global and local ocean flow field (Black Sea and Mediterranean Sea) calculated from satellite maps of sea level anomaly to verify our method. Experimental results demonstrate the good effectiveness of our method.
机译:海洋表面流(或洋流)的可视化在理解海洋动力学过程中起着重要作用。在计算机科学和海洋学领域,它一直是研究的热点。海洋表面流是多尺度海洋动力学的湍流场混合,例如大规模海洋环流(约100个),中尺度涡旋(10-100),亚中尺度过程(1-10)。中尺度涡旋相对于大规模海洋环流而言是强势但寿命短的运动,对海洋水团,动量和能量的运输非常重要。但是,将它们的检测和识别作为探索其动力机制的基础仍然是一个具有挑战性的问题。一方面,在混合海流场中,不同的海流相互依存并相互影响,使得现有方法难以在其中识别。另一方面,中尺度涡旋是海洋上的活跃信号。他们可以随时更改其形式和速度。这对现有的作品提出了挑战,以应对其边界含糊和不懈的过渡。为了解决这些问题,本文提出了一种基于修正的亥姆霍兹-霍奇分解(HHD)的新颖的2D和3D海面可视化方法,该方法可广泛用于中尺度涡旋检测。在我们的方法中,HHD将每个混合海洋流场分解为两个分量:卷曲分量和发散分量。这两个组成部分可以分别表示不同的洋流。此外,为了提高涡流识别的性能并同时显示洋流的3D结构,HHD将2D海洋流场转换为3D潜在表面。最后,对从海平面异常卫星图计算出的全球和局部洋流场(黑海和地中海)进行了综合实验,以验证我们的方法。实验结果证明了我们方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号