首页> 外文期刊>Journal of Visual Languages & Computing >Fast Retrieval by Spatial Structure in Image Databases
【24h】

Fast Retrieval by Spatial Structure in Image Databases

机译:图像数据库中空间结构的快速检索

获取原文
获取原文并翻译 | 示例

摘要

The state-of-the-art approach for speeding-up the time responses in databases is using Spatial Access Methods (SAMs) like e.g. R-trees. However, these methods do not treat image content directly (e.g. objects are approximated by their minimum bounding rectangles), nor can they handle images with multiple regions. The proposed approach extends the existing framework of indexing using SAMs to treat image content in conjunction with two well-known image-matching methods, namely the editing distance on Attributed Relational Graphs (ARGs) and the Hungarian method for graph matching. It provides index support for the two most common types of similarity queries, referred to as range and nearest-neighbor queries and has many desirable properties. For instance, it handles even complex queries specifying multiple objects (such as queries by image example), it returns exactly the same answers with the sequential scan methods (without indexing) and works with any SAM (e.g. R-tress) and with any image distance function provided that it satisfies the so-called Lower Bounding Principle.
机译:加速数据库中时间响应的最新方法是使用空间访问方法(SAM),例如R树。但是,这些方法不能直接处理图像内容(例如,对象由其最小边界矩形近似),也不能处理具有多个区域的图像。所提出的方法结合了两种众所周知的图像匹配方法,扩展了使用SAM来处理图像内容的现有索引框架,这两种方法分别是属性关系图(ARG)的编辑距离和匈牙利图匹配的方法。它为两种最常见的相似性查询(称为范围查询和最近邻查询)提供索引支持,并具有许多理想的属性。例如,它甚至可以处理指定多个对象的复杂查询(例如按图像示例查询),它使用顺序扫描方法(没有索引)返回完全相同的答案,并且可以与任何SAM(例如R-tress)和任何图像一起使用距离函数,只要它满足所谓的下界原则。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号