首页> 外文期刊>Journal of Visual Languages & Computing >Biometric system adaptation by self-update and graph-based techniques
【24h】

Biometric system adaptation by self-update and graph-based techniques

机译:通过自我更新和基于图的技术进行生物识别系统的适应

获取原文
获取原文并翻译 | 示例

摘要

Self-update is the most commonly adopted biometric template update technique in which the system adapts itself to the confidently classified samples. However, the recent works indicate that self-update has limited capability to capture samples representing significant intra-class variations. As an alternative, a biometric template update technique based on the graph-based representation is proposed. This technique can potentially capture samples with significant variations, resulting in efficient adaptation. Until now, the efficacy of these adaptation techniques has been proven only on the basis of experimental evaluations on small data sets. The contribution of this paper lies in (a) conceptual explanation of the functioning of self-update and graph-based techniques to template adaptation leading to efficacy of the latter and (b) evaluation of the performance of these adaptation techniques in comparison to the baseline system without adaptation. Experiments are conducted on the large DIEE data set, explicitly collected for this aim. Reported results validate the superiority of the graph-based technique over self-update.
机译:自我更新是最普遍采用的生物特征模板更新技术,在这种技术中,系统将自己适应于可靠分类的样本。但是,最近的工作表明,自我更新的能力有限,无法捕获代表明显的类内变异的样本。作为替代方案,提出了一种基于图形表示的生物特征模板更新技术。该技术可以潜在地捕获具有明显变化的样本,从而实现有效的适应。到目前为止,仅在对小数据集进行实验评估的基础上证明了这些适应技术的有效性。本文的贡献在于(a)对基于模板的自适应更新和基于图的技术的功能进行概念性解释,从而导致后者的功效;以及(b)与基线相比,评估这些自适应技术的性能系统没有适应。为此,对大型DIEE数据集进行了实验,这些数据集已明确收集。报告的结果证实了基于图的技术优于自我更新的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号