首页> 外文期刊>Journal of Visual Languages & Computing >Online region computations for Euler diagrams with relaxed drawing conventions
【24h】

Online region computations for Euler diagrams with relaxed drawing conventions

机译:带有宽松绘图约定的欧拉图的在线区域计算

获取原文
获取原文并翻译 | 示例

摘要

Euler diagrams are an accessible and effective visualisation of data involving simple set-theoretic relationships. Efficient algorithms to quickly compute the abstract regions of an Euler diagram upon curve addition and removal have previously been developed (the single marked point approach, SMPA), but a strict set of drawing conventions (called well-formedness conditions) were enforced, meaning that some abstract diagrams are not representable as concrete diagrams. We present a new methodology (the multiple marked point approach, MMPA) enabling online region computation for Euler diagrams under the relaxation of the drawing convention that zones must be connected regions. Furthermore, we indicate how to extend the methods to deal with the relaxation of any of the drawing conventions, with the use of concurrent line segments case being of particular importance. We provide complexity analysis and compare the MMPA with the SMPA. We show that these methods are theoretically no worse than other comparators, whilst our methods apply to any case, and are likely to be faster in practise due to their online nature. The machinery developed for the concurrency case could be of use in Euler diagram drawing techniques (in the context of the Euler Graph), and in computer graphics (e.g. the development of an advanced variation of a winged edge data structure that deals with concurrency). The algorithms are presented for generic curves; specialisations such as utilising fixed geometric shapes for curves may occur in applications which can enhance capabilities for fast computations of the algorithms' input structures. We provide an implementation of these algorithms, utilising ellipses, and provide time-based experimental data for benchmarking purposes.
机译:欧拉图是涉及简单的集合理论关系的可访问且有效的数据可视化。先前已经开发了有效的算法,可以在添加和删除曲线时快速计算Euler图的抽象区域(单标记点方法,SMPA),但是强制执行一套严格的绘图约定(称为良好格式条件),这意味着一些抽象图不能表示为具体图。我们提出了一种新的方法(多标记点方法,MMPA),可以在放宽区域必须为连接区域的绘图约定的情况下,为欧拉图进行在线区域计算。此外,我们指出了如何扩展方法以处理任何绘图约定的松弛,并发线段的使用尤为重要。我们提供了复杂性分析,并将MMPA与SMPA进行了比较。我们证明这些方法在理论上不比其他比较器差,而我们的方法适用于任何情况,并且由于其在线性质,在实践中可能会更快。针对并发案例开发的机制可用于Euler图绘制技术(在Euler Graph的上下文中)和计算机图形学中(例如开发处理并发的有翼边数据结构的高级变体)。给出了通用曲线的算法;诸如在曲线上使用固定的几何形状之类的专业化可能会出现在可以提高算法输入结构快速计算能力的应用中。我们利用椭圆提供了这些算法的实现,并提供了基于时间的实验数据用于基准测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号