首页> 外文期刊>Journal of visual communication & image representation >Pose-based human action recognition via sparse representation in dissimilarity space
【24h】

Pose-based human action recognition via sparse representation in dissimilarity space

机译:基于相异空间中稀疏表示的基于姿势的人体动作识别

获取原文
获取原文并翻译 | 示例

摘要

Human actions can be considered as a sequence of body poses over time, usually represented by coordinates corresponding to human skeleton models. Recently, a variety of low-cost devices have been released, able to produce markerless real time pose estimation. Nevertheless, limitations of the incorporated RGB-D sensors can produce inaccuracies, necessitating the utilization of alternative representation and classification schemes in order to boost performance. In this context, we propose a method for action recognition where skeletal data are initially processed in order to obtain robust and invariant pose representations and then vectors of dissimilarities to a set of prototype actions are computed. The task of recognition is performed in the dissimilarity space using sparse representation. A new publicly available dataset is introduced in this paper, created for evaluation purposes. The proposed method was also evaluated on other public datasets, and the results are compared to those of similar methods.
机译:可以将人体动作视为一段时间内的一系列身体姿势,通常由与人体骨骼模型相对应的坐标表示。最近,已经发布了各种低成本设备,能够产生无标记的实时姿势估计。但是,由于内置RGB-D传感器的局限性可能会产生误差,因此必须使用替代表示和分类方案才能提高性能。在这种情况下,我们提出了一种动作识别方法,其中首先处理骨骼数据以获得鲁棒且不变的姿势表示,然后计算与一组原型动作不相似的向量。识别的任务是使用稀疏表示在相异空间中执行的。本文介绍了一个新的公共可用数据集,该数据集是为评估目的而创建的。还对其他公开数据集对提出的方法进行了评估,并将结果与​​类似方法进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号