首页> 外文期刊>Journal of visual communication & image representation >Robust visual tracking via CAMShift and structural local sparse appearance model
【24h】

Robust visual tracking via CAMShift and structural local sparse appearance model

机译:通过CAMShift和结构局部稀疏外观模型进行可靠的视觉跟踪

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses issues in visual tracking where videos contain object intersections, pose changes, occlusions, illumination changes, motion blur, and similar color distributed background. We apply the structural local sparse representation method to analyze the background region around the target. After that, we reduce the probability of prominent features in the background and add new information to the target model. In addition, a weighted search method is proposed to search the best candidate target region. To a certain extent, the weighted search method solves the local optimization problem. The proposed scheme, designed to track single human through complex scenarios from videos, has been tested on some video sequences. Several existing tracking methods are applied to the same videos and the corresponding results are compared. Experimental results show that the proposed tracking scheme demonstrates a very promising performance in terms of robustness to occlusions, appearance changes, and similar color distributed background. (C) 2015 Elsevier Inc. All rights reserved.
机译:本文解决了视觉跟踪中的问题,其中视频包含对象相交,姿势变化,遮挡,照明变化,运动模糊以及类似的颜色分布背景。我们应用结构局部稀疏表示方法来分析目标周围的背景区域。之后,我们降低了在背景中突出显示特征的可能性,并向目标模型添加了新信息。另外,提出了一种加权搜索方法来搜索最佳候选目标区域。加权搜索方法在一定程度上解决了局部优化问题。该提议的方案旨在通过视频跟踪复杂场景中的单个人,已经在一些视频序列上进行了测试。将几种现有的跟踪方法应用于相同的视频,并比较相应的结果。实验结果表明,所提出的跟踪方案在对遮挡物的鲁棒性,外观变化和相似的颜色分布背景方面表现出非常有前途的性能。 (C)2015 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号