首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Robust Visual Tracking Using Local Sparse Appearance Model and K-Selection
【24h】

Robust Visual Tracking Using Local Sparse Appearance Model and K-Selection

机译:使用局部稀疏外观模型和K选择进行鲁棒的视觉跟踪

获取原文
获取原文并翻译 | 示例

摘要

Online learned tracking is widely used for its adaptive ability to handle appearance changes. However, it introduces potential drifting problems due to the accumulation of errors during the self-updating, especially for occluded scenarios. The recent literature demonstrates that appropriate combinations of trackers can help balance the stability and flexibility requirements. We have developed a robust tracking algorithm using a local sparse appearance model (SPT) and K-Selection. A static sparse dictionary and a dynamically updated online dictionary basis distribution are used to model the target appearance. A novel sparse representation-based voting map and a sparse constraint regularized mean shift are proposed to track the object robustly. Besides these contributions, we also introduce a new selection-based dictionary learning algorithm with a locally constrained sparse representation, called K-Selection. Based on a set of comprehensive experiments, our algorithm has demonstrated better performance than alternatives reported in the recent literature.
机译:在线学习跟踪因其适应外观变化的自适应能力而被广泛使用。但是,由于在自我更新过程中积累了错误,因此特别是在被遮挡的情况下,由于潜在的漂移,会带来潜在的漂移问题。最近的文献表明,跟踪器的适当组合可以帮助平衡稳定性和灵活性要求。我们使用局部稀疏外观模型(SPT)和K-Selection开发了一种鲁棒的跟踪算法。静态稀疏字典和动态更新的在线字典基础分布用于对目标外观进行建模。提出了一种新颖的基于稀疏表示的投票图和稀疏约束正则化均值漂移算法来鲁棒地跟踪目标。除了这些贡献之外,我们还介绍了一种新的基于选择的字典学习算法,该算法具有局部受限的稀疏表示形式,称为K-选择。基于一组全面的实验,我们的算法比最近的文献报道的算法具有更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号