首页> 外文期刊>Journal of visual communication & image representation >Cube-based perceptual weighted Kronecker Compressive Sensing: Can we avoid non-visible redundancies acquisition?
【24h】

Cube-based perceptual weighted Kronecker Compressive Sensing: Can we avoid non-visible redundancies acquisition?

机译:基于多维数据集的感知加权Kronecker压缩感测:我们可以避免不可见的冗余获取吗?

获取原文
获取原文并翻译 | 示例

摘要

Compressive sensing approach directly avoids the acquisition of statistical redundancies of a signal. However, perceptual redundancies of images and videos due to the human eye sensitivity are not considered so far. Besides, an effective sampling scheme is needed to multidimensional signal reconstruction using a low number of measurements to avoid all redundancies. In this paper, along with the Kronecker structure of the sampling matrix we design various weighting matrices based on the spatio-temporal contrast sensitivity function to avoid acquisition of non-visible redundancies. Moreover, inspired by the block-based compressive sensing, we divide a group of pictures in a video sequence into cubes. Hence, the size of measurement and sparsifying basis matrices are reduced and the reconstruction algorithm can be implemented in parallel. We further show that our simple linear sampling approach can be competitive with motion compensation method. Simulation results verify that our proposed method notably outperforms the other state-of-the-art methods. (c) 2017 Elsevier Inc. All rights reserved.
机译:压缩感测方法直接避免了信号统计冗余的获取。但是,到目前为止,尚未考虑由于人眼敏感而导致的图像和视频的感知冗余。此外,需要使用少量测量来进行多维信号重建的有效采样方案,以避免所有冗余。在本文中,我们结合采样矩阵的Kronecker结构,基于时空对比敏感度函数设计了各种加权矩阵,以避免获取不可见的冗余。此外,受基于块的压缩感测的启发,我们将视频序列中的一组图片划分为多个立方体。因此,减小了测量矩阵和稀疏基矩阵的大小,并且可以并行实现重构算法。我们进一步证明,我们的简单线性采样方法可以与运动补偿方法竞争。仿真结果证明,我们提出的方法明显优于其他最新技术。 (c)2017 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号