首页> 外文期刊>Journal of visual communication & image representation >Saliency ranker: A new salient object detection method
【24h】

Saliency ranker: A new salient object detection method

机译:显着性等级:一种新的显着对象检测方法

获取原文
获取原文并翻译 | 示例

摘要

Recently, saliency detection has become an active research topic in learning from labeled image, where various supervised methods were designed. Many existing methods usually cast saliency detection as a binary classification or regression problem, in which saliency detection performance relies heavily on the expensive pixel-wise annotations of salient objects. This paper addresses the issue by developing a novel learning-to-rank model with a limited number of training data, which combines the strength of cost-sensitive label ranking methods with the power of low-rank matrix recovery theories. Rather than using a binary decision for each saliency value, our approach ranks saliency values in a descending order with the estimated relevance to the given saliency. Additionally, we also aggregate the prediction models for different saliency labels into a matrix, and solve saliency ranking via a low-rank matrix recovery problem. Extensive experiments over challenging benchmarks clearly validate advantage of our method.
机译:最近,显着性检测已成为从标记图像中学习的活跃研究主题,其中设计了各种监督方法。许多现有方法通常将显着性检测转换为二进制分类或回归问题,其中显着性检测性能严重依赖于显着对象的昂贵的像素级注释。本文通过开发一种具有有限数量训练数据的新型按等级学习模型来解决此问题,该模型将成本敏感的标签排序方法的优势与低秩矩阵恢复理论的强大功能相结合。我们的方法不是对每个显着性值使用二元决策,而是对显着性值按降序排列,并与给定的显着性相关。此外,我们还将不同显着性标签的预测模型汇总到一个矩阵中,并通过低秩矩阵恢复问题解决显着性排名。在具有挑战性的基准上进行的大量实验清楚地证明了我们方法的优势。

著录项

  • 来源
  • 作者单位

    Beijing Jiaotong Univ, Dept Comp Sci & Engn, Beijing Key Lab Traff Data Anal & Min, Beijing 100044, Peoples R China;

    Beijing Jiaotong Univ, Dept Comp Sci & Engn, Beijing Key Lab Traff Data Anal & Min, Beijing 100044, Peoples R China;

    Beijing Jiaotong Univ, Dept Comp Sci & Engn, Beijing Key Lab Traff Data Anal & Min, Beijing 100044, Peoples R China;

    Beijing Jiaotong Univ, Dept Comp Sci & Engn, Beijing Key Lab Traff Data Anal & Min, Beijing 100044, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Saliency detection; Label ranking; Matrix recovery;

    机译:显着性检测;标签排名;矩阵回收;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号