首页> 外文期刊>Journal of visual communication & image representation >Image annotation based on multi-view robust spectral clustering
【24h】

Image annotation based on multi-view robust spectral clustering

机译:基于多视图鲁棒光谱群集的图像注释

获取原文
获取原文并翻译 | 示例

摘要

Nowadays, image annotation has been a hot topic in the semantic retrieval field due to the abundant growth of digital images. The purpose of these methods is to realize the content of images and assign appropriate keywords to them. Extensive efforts have been conducted in this field, which effectiveness is limited between low-level image features and high-level semantic concepts. In this paper, we propose a Multi-View Robust Spectral Clustering (MVRSC) method, which tries to model the relationship between semantic and multi-features of training images based on the Maximum Correntropy Criterion. A Half-Quadratic optimization framework is used to solve the objective function. According to the constructed model, a few tags are suggested based on a novel decision-level fusion distance. The stability condition and bound calculation of MVRSC are analyzed, as well. Experimental results on real-world Flickr and 500PX datasets, and Corel5K confirm the superiority of the proposed method over other competing models.
机译:如今,图像标注已经在语义检索领域的热门话题,由于数字图像的丰富发展。这些方法的目的是实现图像的内容和分配适当的关键字来。广泛的努力已经在这个领域,其有效性低级别图像特征和高层语义概念之间的限制已经进行。在本文中,我们提出了一个多视角稳健谱聚类(MVRSC)方法,它试图基于最大Correntropy标准语义和训练图像的多特征之间的关系模型。半二次优化框架用于解决目标函数。根据该构造的模型,几个标签提出了一种基于一种新的决策级图像融合距离。稳定条件和MVRSC的结合的计算进行了分析,以及。现实世界的Flickr和500PX数据集,并Corel5K实验结果证实了该方法的比其他竞争车型的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号