首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >Multi-View Clustering of Microbiome Samples by Robust Similarity Network Fusion and Spectral Clustering
【24h】

Multi-View Clustering of Microbiome Samples by Robust Similarity Network Fusion and Spectral Clustering

机译:鲁棒相似网络融合和谱聚类对微生物组样品的多视图聚类

获取原文
获取原文并翻译 | 示例

摘要

Microbiome datasets are often comprised of different representations or views which provide complementary information, such as genes, functions, and taxonomic assignments. Integration of multi-view information for clustering microbiome samples could create a comprehensive view of a given microbiome study. Similarity network fusion (SNF) can efficiently integrate similarities built from each view of data into a unique network that represents the full spectrum of the underlying data. Based on this method, we develop a Robust Similarity Network Fusion (RSNF) approach which combines the strength of random forest and the advantage of SNF at data aggregation. The experimental results indicate the strength of the proposed strategy. The method substantially improves the clustering performance significantly comparing to several state-of-the-art methods in several datasets.
机译:微生物组数据集通常由不同的表示形式或视图组成,这些表示形式或视图提供补充信息,例如基因,功能和生物分类分配。集成多视图信息以对微生物组样本进行聚类可以创建给定微生物组研究的综合视图。相似性网络融合(SNF)可以将从每个数据视图构建的相似性有效地集成到一个代表基础数据完整频谱的唯一网络中。基于此方法,我们开发了一种鲁棒相似网络融合(RSNF)方法,该方法结合了随机森林的优势和SNF在数据聚合方面的优势。实验结果表明了该策略的优势。与多个数据集中的几种最新方法相比,该方法显着提高了聚类性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号