首页> 外文期刊>Computer Vision, IET >Robust multi-view representation for spatial–spectral domain in application of hyperspectral image classification
【24h】

Robust multi-view representation for spatial–spectral domain in application of hyperspectral image classification

机译:高光谱图像分类中空间光谱域的稳健多视图表示

获取原文
获取原文并翻译 | 示例

摘要

Spatial-spectral representation plays an important role in hyperspectral images (HSIs) classification. However, many of the existing local feature algorithms for HSIs are based on the two-dimensional image and do not take full advantage of the information hidden in HSI, such as spatial-spectral locality correlation information, thereby reducing the robustness of these algorithms. In response to these problems, this study presents a robust multi-view spatial-spectral representation method with the characteristics of HSIs. There are two key techniques in this representation method, called spatial-spectral locality constrained linear coding (SSLLC) and spatial-spectral pyramid matching model (SSPM). Firstly, SSLLC applies the locality information of the feature points and visual words and uses the discriminant information provided by the nearest-neighbouring spatial-spectral feature points in HSIs. Secondly, SSPM works by partitioning the image into increasingly fine sub-cubes and uses the cubes to match the local features of the HSIs. The multi-view representation is tolerant to illumination change, image rotation, affine distortion etc. To assess the validity of authors' algorithm, the authors compared their results with several existing approaches, including a deep learning method. The experimental results show that this representation method can effectively improve the accuracy of HSIs classification.
机译:空间光谱表示法在高光谱图像(HSI)分类中起着重要作用。然而,许多现有的用于HSI的局部特征算法都基于二维图像,并且没有充分利用HSI中隐藏的信息(例如空间光谱局部性相关信息),从而降低了这些算法的鲁棒性。针对这些问题,本研究提出了一种具有HSIs特征的鲁棒的多视图空间光谱表示方法。这种表示方法有两种关键技术,即空间光谱局部约束线性编码(SSLLC)和空间光谱金字塔匹配模型(SSPM)。首先,SSLLC应用特征点和视觉单词的位置信息,并使用HSI中最邻近的空间光谱特征点提供的判别信息。其次,SSPM将图像划分为越来越精细的子多维数据集,并使用这些多维数据集来匹配HSI的局部特征。多视图表示可容忍光照变化,图像旋转,仿射失真等。为评估作者算法的有效性,作者将其结果与几种现有方法(包括深度学习方法)进行了比较。实验结果表明,该表示方法可以有效提高HSI分类的准确性。

著录项

  • 来源
    《Computer Vision, IET》 |2019年第2期|90-96|共7页
  • 作者单位

    Shenzhen Univ, ATR Natl Key Lab Def Technol, Shenzhen, Peoples R China|Shenzhen Univ, Guangdong Key Lab Intelligent Informat Proc, Coll Informat Engn, Shenzhen, Peoples R China;

    Shenzhen Univ, ATR Natl Key Lab Def Technol, Shenzhen, Peoples R China|Shenzhen Polytech, Sch Elect & Commun Engn, Shenzhen, Peoples R China;

    Northwestern Polytech Univ, Sch Mech Engn, Xian, Shaanxi, Peoples R China|Northwestern Polytech Univ, Ctr Opt Magery Anal & Learning OPTIMAL, Xian, Shaanxi, Peoples R China;

    South China Normal Univ, Sch Phys & Telecommun Engn, Guangzhou, Guangdong, Peoples R China;

    Shenzhen Univ, ATR Natl Key Lab Def Technol, Shenzhen, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号