首页> 外文会议>Image and signal processing for remote sensing XXII >Spectral-Spatial Hyperspectral Image Classification Using Superpixel-based Spatial Pyramid Representation
【24h】

Spectral-Spatial Hyperspectral Image Classification Using Superpixel-based Spatial Pyramid Representation

机译:基于超像素的空间金字塔表示的光谱空间高光谱图像分类

获取原文
获取原文并翻译 | 示例

摘要

Spatial pyramid matching has demonstrated its power for image recognition task by pooling features from spatially increasingly fine sub-regions. Motivated by the concept of feature pooling at multiple pyramid levels, we propose a novel spectral-spatial hyperspectral image classification approach using superpixel-based spatial pyramid representation. This technique first generates multiple superpixel maps by decreasing the superpixel number gradually along with the increased spatial regions for labelled samples. By using every superpixel map, sparse representation of pixels within every spatial region is then computed through local max pooling. Finally, features learned from training samples are aggregated and trained by a support vector machine (SVM) classifier. The proposed spectral-spatial hyperspectral image classification technique has been evaluated on two public hyperspectral datasets, including the Indian Pines image containing 16 different agricultural scene categories with a 20m resolution acquired by AVIRIS and the University of Pavia image containing 9 land-use categories with a 1.3m spatial resolution acquired by the ROSIS-03 sensor. Experimental results show significantly improved performance compared with the state-of-the-art works. The major contributions of this proposed technique include (1) a new spectral-spatial classification approach to generate feature representation for hyperspectral image, (2) a complementary yet effective feature pooling approach, i.e. the superpixel-based spatial pyramid representation that is used for the spatial correlation study, (3) evaluation on two public hyperspectral image datasets with superior image classification performance.
机译:空间金字塔匹配通过合并空间上越来越精细的子区域中的特征,已经证明了其在图像识别任务中的威力。受多个金字塔级别的特征池概念的启发,我们提出了一种使用基于超像素的空间金字塔表示的新颖光谱空间高光谱图像分类方法。该技术首先通过逐渐减少超像素数量以及标记样本的增加的空间区域来生成多个超像素图。通过使用每个超像素图,然后通过局部最大池计算每个空间区域内像素的稀疏表示。最后,通过支持向量机(SVM)分类器汇总并训练从训练样本中学到的特征。拟议的光谱空间高光谱图像分类技术已在两个公共高光谱数据集上进行了评估,包括由AVIRIS采集的分辨率为20m的包含16种不同农业场景类别的印度松图像和包含9种土地利用类别的帕维亚大学图像。 ROSIS-03传感器获得的空间分辨率为1.3m。实验结果表明,与最新技术相比,性能得到了显着改善。这项提议技术的主要贡献包括(1)一种新的光谱空间分类方法,可生成高光谱图像的特征表示;(2)一种互补而有效的特征池化方法,即用于超光谱的基于超像素的空间金字塔表示空间相关性研究,(3)对具有优异图像分类性能的两个公共高光谱图像数据集进行评估。

著录项

  • 来源
    《Image and signal processing for remote sensing XXII》|2016年|100040w.1-100040w.7|共7页
  • 会议地点 Edinburgh(GB)
  • 作者单位

    Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), Singapore;

    Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), Singapore;

    Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), Singapore,University College London, Statistical Science Department, United Kingdom;

    Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), Singapore;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Hyperspectral; classification; superpixel; sparse representation;

    机译:高光谱;分类;超像素稀疏表示;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号