首页> 外文期刊>Journal of visual communication & image representation >Real-time license plate detection and recognition using deep convolutional neural networks
【24h】

Real-time license plate detection and recognition using deep convolutional neural networks

机译:使用深卷积神经网络的实时车牌检测和识别

获取原文
获取原文并翻译 | 示例

摘要

Automatic License Plate Recognition (ALPR) is an important task with many applications in Intelligent Transportation and Surveillance systems. This work presents an end-to-end ALPR method based on a hierarchical Convolutional Neural Network (CNN). The core idea of the proposed method is to identify the vehicle and the license plate region using two passes on the same CNN, and then to recognize the characters using a second CNN. The recognition CNN massively explores the use of synthetic and augmented data to cope with limited training datasets, and our results show that the augmentation process significantly increases the recognition rate. In addition, we present a novel temporal coherence technique to better stabilize the OCR output in videos. Our method was tested with publicly available datasets containing Brazilian and European license plates, achieving accuracy rates better than competitive academic methods and a commercial system. (c) 2020 Elsevier Inc. All rights reserved.
机译:自动车牌识别(ALPR)是智能运输和监控系统中许多应用的重要任务。该工作介绍了基于分层卷积神经网络(CNN)的端到端ALPR方法。所提出的方法的核心思想是使用同一CNN上的两个通过的车辆和牌照区域,然后使用第二CNN识别字符。识别CNN大规模探讨了合成和增强数据的使用以应对有限的训练数据集,我们的结果表明,增强过程显着提高了识别率。此外,我们提出了一种新的时间相干技术,以更好地稳定视频中的OCR输出。我们的方法与含巴西和欧洲牌照的公开数据集进行了测试,比竞争性学术方法和商业系统更好地实现精度率。 (c)2020 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号