首页> 外文期刊>Journal of visual communication & image representation >Adaptive illumination-invariant face recognition via local nonlinear multi-layer contrast feature
【24h】

Adaptive illumination-invariant face recognition via local nonlinear multi-layer contrast feature

机译:通过局部非线性多层对比特征的自适应光照不变人脸识别

获取原文
获取原文并翻译 | 示例

摘要

Traditional face recognition method usually faces the challenge of varying lighting condition. In this paper, we propose an illumination-invariant local binary descriptor learning method for face recognition. Unlike local binary descriptor (LBP) and its variants, which usually utilize the rigid sign function for binarization despite of data distributions. We first determine a dynamic thresholds strategy including the information of illumination variation to extract nonlinear multi-layer contrast features. Specially, Exponential Discriminant Analysis (EDA) is designed to act as preprocessing which can contribute to improve the discriminative ability of the face image by enlarging the margin between different classes relative to the same class. To further improve the recognition performance, we combined our preliminary work, the adaptive fuzzy fusion framework, to integrate the recognition results for multi-scale features spaces. Extensive experiments conducted on four face databases validate the effectiveness of the proposed method for illumination face recognition. (C) 2019 Published by Elsevier Inc.
机译:传统的人脸识别方法通常面临光照条件变化的挑战。在本文中,我们提出了一种光照不变的局部二进制描述符学习方法来进行人脸识别。与本地二进制描述符(LBP)及其变体不同,本地二进制描述符(LBP)及其变体通常利用刚性符号函数进行二进制化,尽管数据分布也如此。我们首先确定一种动态阈值策略,包括光照变化信息以提取非线性多层对比度特征。特别地,指数判别分析(EDA)被设计为可以通过扩大相对于同一类别的不同类别之间的边距来提高面部图像的判别能力的预处理。为了进一步提高识别性能,我们结合了我们的初步工作,即自适应模糊融合框架,以整合多尺度特征空间的识别结果。在四个面部数据库上进行的大量实验验证了所提出的照明面部识别方法的有效性。 (C)2019由Elsevier Inc.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号